Accepted Manuscript

Optimised dynamic line scan thermographic detection of CFRP inserts using FE updating and POD analysis

J. Peeters, C. Ibarra-Castanedo, F. Khodayar, Y. Mokhtari, S. Sfarra, H. Zhang, X. Maldague, J.J.J. Dirckx, G. Steenackers

NDT&E
international
independent consistence to estimate a Granularion
Ultramonia - Stremagnatia - Stremagnatia

PII: S0963-8695(16)30162-1

DOI: 10.1016/j.ndteint.2017.10.006

Reference: JNDT 1928

To appear in: NDT and E International

Received Date: 3 November 2016

Revised Date: 2 May 2017

Accepted Date: 17 October 2017

Please cite this article as: Peeters J, Ibarra-Castanedo C, Khodayar F, Mokhtari Y, Sfarra S, Zhang H, Maldague X, Dirckx JJJ, Steenackers G, Optimised dynamic line scan thermographic detection of CFRP inserts using FE updating and POD analysis, *NDT and E International* (2017), doi: 10.1016/j.ndteint.2017.10.006.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Optimised Dynamic line scan thermographic detection of CFRP inserts using FE updating and POD analysis

J. Peeters^{a,*}, C. Ibarra-Castanedo^b, F. Khodayar^b, Y. Mokhtari^b, S. Sfarra^{c,d}, H. Zhang^b, X. Maldague^b, J.J.J. Dirckx^f, G. Steenackers^{a,e}

^a University of Antwerp, Op3Mech, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Tel.: +32-3-2051938

^bLaval University, Computer Vision and Systems Laboratory, Electrical and Computer Engineering Department, 1065 av de la Medecine, Quebec, Canada, G1V 0A6.

^cLas.E.R. Laboratory, Department of Industrial and Information Engineering and Economics (DIIIE), University of L'Aquila, Piazzale E. Pontieri 1, Loc. Monteluco di Roio, Roio Poggio, 67100 L'Aquila, AQ, Italy.

^d Tomsk Polytechnic University, Lenin Av., 30, Tomsk 634050, Russia.

Abstract

The detection of delaminations in composite laminates using automated thermographic scanning is a quite challenging task. The set-up parameters are not only dependent on the equipment, but on the inspected component as well. In this work, a methodology is discussed to use Finite Element (FE) model updating to automatically establish the most suitable inspection parameters for a given combination of the structure and the investigated delamination depths. The optimised results are compared using binary Probability of Detection analysis and are benchmarked with parameter sets retrieved by an expert using the regular trial & error approach. The results show an improvement of the accuracy and scanning speed which significantly increases as the POD decreases and the complexity of the samples increases.

Keywords: Dynamic line scan, FE updating, Inverse problem, automated NDT, Quantitative Non-destructive Evaluation, CFRP, Probability of Detection

Email address: jeroen.peeters2@uantwerpen.be (J. Peeters)

URL: www.op3mech.be (J. Peeters)

^e Vrije Universiteit Brussel, Acoustics & Vibration Research Group, Pleinlaan 2, B-1050, Brussels, Belgium.

^f University of Antwerp, Laboratory of Biomedical Physics, Groenenborgerlaan 171, B-2020 Antwerp,

Belgium.

^{*}Ing. Jeroen Peeters

Download English Version:

https://daneshyari.com/en/article/6758305

Download Persian Version:

https://daneshyari.com/article/6758305

Daneshyari.com