Author's Accepted Manuscript

Research on the fiber lay-up orientation detection of unidirectional CFRP laminates composite using thermal-wave radar imaging

Fei Wang, Junyan Liu, Yang Liu, Yang Wang

www.elsevier.com/locate/indt

PII: S0963-8695(16)30073-1

DOI: http://dx.doi.org/10.1016/j.ndteint.2016.08.002

Reference: JNDT1790

To appear in: NDT and E International

Received date: 29 April 2016 Revised date: 10 August 2016 Accepted date: 15 August 2016

Cite this article as: Fei Wang, Junyan Liu, Yang Liu and Yang Wang, Research on the fiber lay-up orientation detection of unidirectional CFRP laminate composite using thermal-wave radar imaging, *NDT and E International* http://dx.doi.org/10.1016/j.ndteint.2016.08.002

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Research on the fiber lay-up orientation detection of unidirectional

CFRP laminates composite using thermal-wave radar imaging

Fei Wang^{1,2}, Junyan Liu^{2*}, Yang Liu^{1,2}, Yang Wang^{1,2*}

¹State Key Laboratory of Robotics and System (HIT), Harbin, 150001, P. R. China

²School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China

ljywlj@hit.edu.cn

wyyh@hit.edu.cn

*Corresponding authors.

Abstract

A depth dynamic-resolution thermal-wave radar imaging (TWRI) was used to detect

fiber lay-up orientations in the unidirectional CFRP laminate composite. A phase

characteristic of thermal wave radar (TWR) signal was proposed and calculated by

discrete fractional Fourier transform (DFrFT). The DFrFT phase distribution contour

line was approximated as an ellipse and fitted by a non-standard elliptic equation. The

ellipse ration angle dependent on the DFrFT phase (defined as Ellipse Angle Curve,

EAC) was found to be sensitive to the fiber lay-up orientations of CFRP composite.

An inverse methodology was developed to quantitatively characterize the fiber lay-up

orientation angle through reconstructing DFrFT phase distribution. A cost function

that minimized the square of DFrFT phase difference between TWRI inspection and

numerical calculations was constructed, and a hybrid algorithm that combined the

simulation annealing (SA) with Nelder-Mead simplex research (NM) method was

employed to solve the cost function and find the global optimal solution of the fiber

layer-up orientation angle. Experimental investigation of a 7-layer CFRP laminates

[0°/45°/90°/0°]_s validated the feasibility of estimating carbon fiber layer-up

orientations by TWRI.

Keywords: Fiber orientation; CFRP composite; IR Thermography; Finite element

analysis (FEA)

1

Download English Version:

https://daneshyari.com/en/article/6758316

Download Persian Version:

https://daneshyari.com/article/6758316

Daneshyari.com