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a b s t r a c t

This paper investigates the interaction of the SH0 mode with discontinuities in plate waveguides. The
scattered fields are evaluated using a novel method that exploits the principle of reciprocity in elasto-
dynamics. The results obtained compare to those provided by a finite element model. Very good
agreement between the analytical and numerical models proves the effectiveness of the proposed ap-
proach, enabling us to clearly elucidate the role of the different size and shape parameters involved. The
discontinuities considered are single and double sharp reductions of plate height of different amounts
and lengths, where both symmetric and nonsymmetric one-sided notch cases are treated. Regimes re-
lated to low and high values of the product frequency and height of the plate are investigated, showing
the dependence of reflection and transmission coefficients on length and height of the discontinuity, as
well as the occurrence of mode conversion. The analytical approach proposed leads to a better under-
standing of the interaction of guided waves with discontinuities, which may stimulate the application of
guided waves to defect sizing rather than to simple detection.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, guided waves have played an im-
portant role in nondestructive health monitoring, with applica-
tions ranging from the detection of cracks and corrosion to the
monitoring of states of stress [1,2]. The success of guided waves is
related to the geometric waveguide structure of many structural
elements such as beams, rails, and pipes. With remarkable ad-
vantages as compared to bulk waves for inspection areas, guided
waves propagating in such solids can be used to monitor large
structural portions thanks to the existence of modes with minimal
attenuation. This technique has been mainly used for defect
screening rather than for defect characterization because of the
many difficulties that arise when the scattered field that originated
from a wave encountering a discontinuity has to be interpreted.

Practical guided-wave ultrasonic testing is done by sending a
signal along a waveguide and interpreting the scattered response.
In the simplest case, one single-mode signal is used. In the pre-
sence of a defect, the transmitted and reflected responses consist
of a complex superposition of wave modes. At any frequency,
many modes exist and the incident wave can be converted into a
multimode reflected or transmitted signal in order to satisfy
boundary conditions. These modes are often dispersive, and so the
shape of the multimode signal can change with distance and the

resulting pattern can be rather complex [3,4].
Better knowledge of wave interaction with defects can be of use

in different applications, in particular in the investigation of so-
lutions to the inverse problem of defect characterization based on
the response variation. The ability to describe the variation of
scattering coefficients as a function of the geometric character-
istics of the discontinuity is fundamental for the evaluation of the
uniqueness of the solution to the inverse problem. Recently, such
ability has given rise to the application of guided waves to defect
sizing and shape reconstruction of surfaces and inner defects [5, 6,
7–9]. The knowledge of wave interaction with defects can also help
in the selection of modes and frequencies that improve inspection
sensitivity to various discontinuities.

Determining reflections and transmission coefficients from
discontinuities of different kinds is challenging. Several ap-
proaches have been proposed. Many researchers have investigated
this topic, and a complete review of the vast literature is beyond
the scope of this paper. In general, it is necessary to resort to
numerical methods. The different approaches can be classified as
methods based on wave expansion, often referred to as mode
matching or modal decomposition methods [10–14], finite ele-
ment methods [3,4,15–18], or hybrid numerical methods com-
bining finite element formulations with waves or boundary ele-
ments [19–21].

The approach used in this paper belongs to the category of
modal decomposition methods, which use integral formulations to
enforce boundary conditions. Reflection and transmission coeffi-
cients are obtained using a method previously proposed by the
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authors [22] based on the principle of reciprocity in elastody-
namics [23,24], which relates the elastic solutions of two different
loading states. Our approach exploits the vector projection deriv-
ing from the principle of reciprocity that always preserves the
energetic equivalence between power fields, independently of the
number of modes considered. Poddar and Giurgiutiu [26] have
independently just come up with something analogous by simply
projecting the boundary conditions, which, however, requires a
higher number of modes for convergence. The idea of connecting
two states with reciprocity to determine scattering coefficients
was developed first for bulk wave propagation [25] and then for
waveguides [11]. Analogously, here, a virtual or test wave whose
solution is known is used to obtain information on another elas-
todynamic state, which is the response of the waveguide in the
presence of the discontinuity. Differently from Ditri [11], here the
analysis is not limited to a crack, but, using double sharp dis-
continuities, we assume that the defect has a finite extension that
sustains wave modes. In such a way, multiple localized vertical
discontinuities, be they symmetric or antisymmetric, can be dealt
with.

The focus of this study concerns discontinuities with simple
shapes, which are enough to present some interesting aspects of
the scattering. The shapes are sharp single- or double-step chan-
ges of cross section, which in real structures apply to notches,
joints, or corroded areas. In particular, the interaction of the shear
SH0 wave mode with such changes in the height of a plate is
studied. Symmetric and nonsymmetric notch cases are both con-
sidered. Some aspects of the problem treated in this paper were
investigated in Demma et al. [17], who limited their analysis to low
frequencies (no mode conversion), and in Song et al. [21], who
reported experiments demonstrating the sizing capabilities of
tests conducted with an SH0 shear wave in a plate with overlap. It
is also worth recalling Rajagopal and Lowe [3] and Ratassep et al.
[4], where a finite element model (FEM) of a plate was used to
show the diffraction of the SH0 wave due to through-thickness
cracks.

Shear waves are chosen because they enable a simple com-
parison between the reflection and transmission coefficients cal-
culated using the proposed approach, which gives an analytical
solution, and the results obtained from FEM. Moreover, by chan-
ging the height of the plate, situations in which single or multiple
modes are expected in the scattered fields can be investigated, and
the phenomenon of mode conversion can be observed. From a
practical point of view, the SH0 mode is nondispersive and can be
applied to both plates and pipes because its dynamics also sa-
tisfactorily describe the behavior of the first torsional mode in
pipes of large radius [17,20].

2. Guided shear waves in a plate

The equation representing the free vibrations of a three-di-
mensional homogeneous and isotropic elastic solid is

σ ρ= ¨ ( )udiv , 1

where ü is the second order time derivative of the displacement
vector, ρ is the material density, σ λ μ= ( ) +E I Etr 2 is the stress
tensor, with λ and μ the Lamé constants, I is the identity tensor,
and = (∇ + ∇ )E u u1/2 T is the strain tensor. To solve the problem in
plates, we use the partial wave technique, in which wave propa-
gation is treated as a combination of bulk waves reflecting be-
tween the boundaries of the plate [27]. We look for plane wave-
front (x2,x3) solutions propagating in the plane x1,x3 (Fig. 1), that is

= ( )α ω[ ( + )− ]eu U , 2i k x x t1 3

where k is the wavenumber along x1, α is the ratio of the wave-
number in the x3 direction to k, and ω is the frequency in rad/s. It
is to be noted that in such plane waves, no dependence on x2
occurs. Substituting Eq. (2) into the equations of motion (1), these
decouple into two equations (first and third of (1)) involving dis-
placements along x1 and x3, which are the Rayleigh–Lamb waves,
and one equation (the second of (1)) involving only displacements
along x2, which represents shear waves. This equation can be
written as μ ρ( + ) = ¨u u u2,11 2,33 2, where the subscripts after the
comma denote the spatial derivative. On the basis of the con-
stitutive equation adopted, it must be remarked that, as shear
waves involve only displacements along x2, the stress components
are only τ23 and τ21. After substitution of (2) into the second of (1),
we obtain a first eigenvalue problem, μ α ρω− ( + ) + =k 1 02 2 2 ,
which enables us to determine two values of ratio α, which are
α = ± −c c/ 1T1,2 , where μ ρ=c /T is the bulk shear wave velocity
and ω=c k/ is the phase velocity of a wave mode with frequencyω
and wavenumber k, so that Eq. (2) is given as

= + ( )α ω α ω[ ( + )− ] [ ( + )− ]u U e U e . 3i k x x t i k x x t
2 2
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If we set up free-stress boundary conditions at = ±x h3 , we obtain
the second eigenvalue problem as follows:
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which, after some manipulation and considering that α α= −1 2,
provides the characteristic equation α( ) =k hsin 2 0, whose roots are
α π= ( )n kh/ 2 . Substituting in the roots of the first eigenvalue pro-
blem, this enables us to determine the phase velocity as a function
of ω, as well as the group velocity ω=c d dk/g [27].

As an example, the dispersion relation of shear waves showing
phase and group velocity as a function of the product hf2 in
MHz mm, where f is the frequency, is shown in Fig. 2. The case
refers to a generic composite fiber-reinforced polymer (FRP) with
ρ = 1600 kg/m3, μ = 68, 700 MPa, height =h2 3 mm, and shear
bulk wave velocity cT¼6553 m/s. In Fig. 2, continuous curves refer
to even symmetric modes and dashed curves to odd nonsym-
metric modes. The fundamental zero-order mode has the same
velocity for all frequencies and heights, whereas other modes
present dispersion. Apart from the fundamental zero mode, every
n-th mode has a cutoff frequency equal to ( )nc h/ 2T , below which its
wavenumber is imaginary and the wave does not propagate. The
mode shapes are derived from Eq. (4), which has to be specialized
for even and odd roots, providing respectively =U U2

2
2
1, and

= −U U2
2

2
1. The related n-th mode shapes are then

π( ) = [ ( )]U x U n x hcos / 22 3 3 and π( ) = [ ( )]U x U n x hsin / 22 3 3 . Because only
displacements according to x2 are involved in the shear problem,
from now on the subscript 2 is dropped. The displacement fields of
the first six wave modes are displayed in Fig. 3 for symmetric and
nonsymmetric modes. The related components of modal stress are
derived from the constitutive relation and depend only on U2.

3. Interaction of a shear wave with a discontinuity

When a propagating wave encounters a discontinuity of any

Fig. 1. Plate geometry.
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