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a b s t r a c t

In this paper slant stack (SL) transform is presented and its application for processing of multi-modal
dispersive Lamb waves snapshots is proposed. The SL transform can facilitate the evaluation of
dispersion curves based on a set of signals captured at the structure's surface. The presented technique
leads explicitly to the frequency-phase-velocity representation of the processed signals. Theory behind
the technique is presented and the SL results are compared to those obtained using the 2D discrete
Fourier transform. The SL is used to process data acquired from an aluminum plate and to investigate
anisotropic properties of a composite plate.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent years Lamb waves have shown a great potential in
ultrasonic nondestructive testing (NDT) applications [1]. The ability
of Lamb waves to travel over long distances and their sensitivity to
different types of flaws is the advantages that enable inspection of
large planar structures. However, a serious issue to deal with in such
applications is the multimodal and dispersive nature of Lamb waves.
Multiple modes can simultaneously propagate in a structure with
different velocities and therefore, even for an intact structure, the
acquired ultrasonic signals normally include a number of super-
imposed wave-packets corresponding to the excited modes, which
complicates the process of extracting damage-reflected waves.
Additionally, dispersion effects are often apparent, i.e., different
frequency components of a particular propagating mode travel with
different velocities, which results in the signal elongation in time and
reduces range resolution of inspection systems [2].

Therefore, in many applications, precise information concern-
ing both modes’ content and wave velocity in the investigated
structure is often assumed. For instance, in phased array imaging
algorithms wave velocity is needed for beam-steering and for the
evaluation of the distance from scatterer to the array [3]. Local
change of wave velocity observed in the inspected structure can be

used as an important damage symptom, e.g., such changes can be
observed due to the mode-conversion at a damage interface or due
to the thickness changes in delaminated area [4,5].

Lamb wave velocity can be predicted theoretically [6], however,
precise information concerningmaterial properties and plate thickness
is required for that. Also the inverse problem can be formulated –

measurements of the dispersive characteristics together with predic-
tions generated by a suitable theoretical model can be used for the
elastic constants’ estimation [6].

Numerous methods for wave velocity measurement have been
proposed. In the case of non-dispersive bulk waves, the knowledge
of propagation distance and time of flight (TOF) measurement is
sufficient for the velocity evaluation. The TOF can be captured as a
time interval between the maximum peaks in the excitation pulse
and the response. In the case of dispersive waves, this method can
be, to some extent, used for group velocity measurements. The
TOF is considered then as a time lag between peaks in the
envelopes of excitation and response [7]. Since in the case of
dispersive waves, different frequency components travel with
different velocities, this method allows only for the assessment
of group velocity, i.e., the velocity of energy propagation.

For the estimation of phase velocity precise time and frequency
information concerning the analyzed signal is needed. This information
can be acquired by gathering data either for several frequencies or for
several points in space. A continuous sine wave excitation signal can be
used to measure the TOF of a single precisely determined frequency
component as it was reported in [6]. The measurement was performed
by varying the separation in a transmitter/receiver pair to obtain
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phase-matching between the excitation and the response. Although
this technique can be accurate for a single mode and a single frequency,
its application for the evaluation of dispersion curves for a broad-band
frequency range seems to be both impractical and time-consuming.

Another problem encountered when measuring dispersion char-
acteristics is the existence of more than one mode for a single
excitation frequency. Moreover, in NDT applications not only the value
of the phase velocity but also the amplitude of the wave-mode at a
given frequency range is important. This information can be used to
select the frequency range in which a considerable suppression of
undesired modes can be obtained. Therefore, spectral methods, which
enable to evaluate amplitude and velocity of different modes are an
interesting tool for the measurement of dispersion curves. An example
of such a technique, applied to ultrasonic guided waves is the 2D
discrete Fourier transform (2DDFT) [8]. This technique involves a
broadband excitation signal and a set of signals captured in subse-
quent points along the wave propagation path. The acquired data is
then processed using the 2DDFT that yields the frequency–wavenum-
ber representation of the dispersive waves.

In this paper an alternativemethod for the experimental evaluation
of dispersion characteristics is presented. The principle of this method
is similar to that presented by Kebaili and Schmitt [9] who evaluated
phase velocities in laminates with orthorhombic symmetry over a
broad range of propagation angles. The technique has its origin in
geophysics where spectral analysis of surface waves (SASW) is often
used for ground structure recovery. A conventional SASW method,
which in principle uses two sensors, is often ineffective for noisy
signals and has recently been replaced by the multichannel analysis of
surface waves (MASW) [10]. For these reasons, the MASW is arguably
regarded as a better approach than the conventional SASW. When the
MASW setup is applied, the estimation of dispersion characteristics of
surface wave field is commonly determined using the so-called p-τ
method [11] or the slant stack (SL) transformation [12,13].

The SL method, which is a digital form of Radon transform, is a
widely used technique for analyzing high-quality reflection and
refraction data in geophysics. The transform is applicable to data from
a line source in a plane model, that is, one Cartesian coordinate. The SL
essentially decomposes the locus of the directly arriving waveforms
into the equivalent set of elementary plane waves according to their
direction of propagation.

Recently, it has been applied to estimate the dispersion character-
istics of dispersive Rayleigh waves in application for NDT of concrete
structures [14,15]. This technique can be also easily introduced for the
evaluation of guided waves, e.g., Lambwaves in various applications of
ultrasound. Therefore, a detailed presentation of this method, which is
probably unfamiliar to the majority of the readers, and its application
for processing signals captured in plate-like structures will be pre-
sented in this paper. Both numerical and experimental data will be
used to illustrate the SL method's performance.

This paper is organized as follows. First, a brief introduction to
Lamb waves and their dispersive and multimodal nature will be
given in Section 2.1. Next, the theoretical background of the SL
transform will be presented in Section 2.2. Performance of the
method and its relation to 2DDFT will be discussed using simu-
lated signals in Section 3. Finally, the SL transform will be used for
the evaluation of dispersion curves of an aluminum and a
composite plate. The experimental results will be presented in
Section 4, followed by conclusions given in Section 5.

2. Theoretical background

We start our presentation with a brief description explaining
how dispersion influences Lamb wave signals. Next, the principles
of SL transformwill be outlined, followed by the comparison of the
presented technique with the 2DDFT method.

2.1. Phase velocity and dispersion

Let us first assume a plane, harmonic wave with amplitude A,
angular frequency ω and wavenumber k, propagating in non-
attenuating and non-dispersive medium. The displacement result-
ing from the wave propagation can be described using a general
analytical expression

yðt; xÞ ¼ A � cos ðωt�kxÞ ð1Þ
Velocity of this wave is related to the phase difference between the
vibrations measured at two different points during the propaga-
tion of the wave. Rewriting the above equation in the form

yðt; xÞ ¼ A � cos �ω t� k
ω
x

� �
; ð2Þ

reveals wave phase velocity defined by the argument of the cosine
function as Vph ¼ω=k, [16]. For an elementary case of non-
dispersive medium the group Vgr and phase velocities are equal,
i.e., Vgr ¼ Vph ¼ const [16], and the analytic form of the time-
domain wide-band plane-wave signal yðt; xÞ received at the
distance x can be easily predicted as

yðt; xÞ ¼ sðtÞnδ t� x
Vph

� �
¼ s t� x

Vph

� �
; ð3Þ

where s(t) is the excitation displacement signal. In the frequency
domain Eq. (3) takes the following form:

Yðω; xÞ ¼ SðωÞ � e� jðω=VphÞx: ð4Þ
If the phase velocity of a wave traveling in a medium is a

function of frequency the medium is referred to as dispersive. The
dispersive nature of a medium can be related to its various
features, for instance, geometric dispersion (related to the pre-
sence of specimen boundaries), material dispersion (present when
material's elastic constants depend on frequency) or scattering
dispersion (caused by the presence of densely distributed inho-
mogeneities in the material) [17].

Lamb waves that are formed by a superposition of multiple
reflections and mode conversions of longitudinal and shear waves
at the free surfaces of the plate generally exhibit strong geometric
dispersion [6]. Harmonic guided waves, propagating in the plane
of the plate, may exist only for those combinations of frequency
and phase velocity corresponding to the existence of standing
waves in the thickness direction. The set of permissible frequen-
cies can be obtained by solving the Rayleigh–Lamb equations. The
resulting phase velocities plotted as a function frequency-
thickness product are referred to as the dispersion curves [16].
An example of the dispersion curves calculated for an isotropic
aluminum plate is shown in Fig. 1. The curves correspond to the
successive antisymmetric (flexural) and symmetric (longitudinal)
modes that can propagate for each frequency-thickness value.

In the case of dispersive medium the phase velocity becomes a
function of frequency and Eq. (4) takes the form

Yðω; xÞ ¼ SðωÞe� jðω=VphðωÞÞx: ð5Þ
Note the signal's amplitude can decrease with the propagation
distance due to material attenuation, energy leakage and geome-
trical spreading of the wavefront. These changes are, however, not
mentioned in the equations for the sake of clarity.

In theory, phase velocity can be evaluated by SASW from the
phase ϕðω; xÞ ¼ ðω=VphðωÞÞx of the signal Yðω; xÞ using the two-
point measurement of the phase difference Δφ between the
points spaced at a distance d. This method, however, is impractical
for Lamb waves since, as shown in Fig. 1, multiple modes may exist
simultaneously and therefore for higher frequency bands’ phase
velocity is not unique. Indeed, taking into account the multimodal
nature of Lamb waves and assuming that q modes are excited in a
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