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a b s t r a c t

A novel strategy, which enables the derivation of exact solutions describing all electromagnetic inter-
actions arising in inductively coupled circuits, is developed. Differential circuit equations are formulated
in terms of the magnetic fields arising in inductive systems, using Faraday's law and convolution, and
solved using the Fourier transform. The approach is valid for systems containing any number of driving
and receiving coils, and may be extended to include nearby conducting and ferromagnetic structures.
Furthermore, arbitrary excitation waveforms, such as a sinusoid or a square wave for applications in
conventional and transient eddy current, respectively, may be considered. In this first work, the general
theory is presented and subsequently applied to the simple case of a coaxial driver and receiver coil
configuration. Theoretical expressions for the self- and mutual inductance coefficients are shown to fall
out of the theory naturally. Experimental results, obtained for a square wave function excitation, are
found to be in excellent agreement with the analytical predictions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Eddy current non-destructive testing (NDT) is one of several technologies making use of the precise generation and measurement of
magnetic fields. Mathematical models describing the transient electromagnetic interactions, which arise between field generating and
sensing coils in close proximity to conducting structures, enable the determination of these structures' geometrical and material
characteristics. This capability is critically important to the aeronautical, nuclear and petrochemical industries for example [1], which
monitor the structural health of their physical assets for economic and safety reasons. Research in eddy current theory had already begun
by 1921 when Von Wwedensky [2] calculated the diffusion of magnetic fields impressed upon rigid conducting cylinders. Later, the
pioneering work of Dodd and Deeds [3] in the late 1960s had led to the formulation of solutions to harmonic induction problems using a
magnetic vector potential formalism. More recently, theoretical work has been performed by Morozova [4], Fan [5], Bowler [6–8],
Theodoulidis [9,10] and many others [11–14] with the aim of modeling induced voltages or coil impedance changes for applications in
NDT. A persistent challenge to the development of driver-pickup models, however, has been a lack of agreement with experimental results
in cases where magnetic structures, which exhibit strong feedback effects, are considered. This is quite inopportune since steel, and many
other materials commonly encountered in industry, are ferromagnetic. Furthermore, the additional magnetic flux, generated by the
magnetization of such structures, enhances the induced eddy current densities [15]. These incentives provide the motivation for the
development of exact mathematical models, which would facilitate the quantitative analysis and interpretation of experimental signals.

This work is the first to incorporate electromagnetic field solutions directly into Kirchoff's circuit equations. The strategy yields
exact expressions that describe all the electromagnetic interactions arising in inductively coupled systems. Thus, feedback effects, which
have historically posed a challenge to the development of transient eddy current models, are completely addressed. In this work, the
methodology for solutions to general eddy current problems is developed in full, but only applied to the simpler case of a coaxial driver
and pickup coil configuration. Initial validation of the theory in this simple case demonstrates the effectiveness of the methodology.
In subsequent works, the theory will be applied to inductive circuit problems containing ferromagnetic conducting structures, such as
half-spaces, plates, rods and tubes. Thus, in a series of works that will follow, the complexity and number of variables considered will be
iteratively increased along with more general validation of the theory and exploration of its potential applications.
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In the simpler case, where no conducting structure is present, electromagnetic interactions arise solely from the inductive coupling
of the coils. To this end, solutions to two-coil inductive circuit problems have already been obtained [16] in the traditional manner;
differential circuit equations are formulated in terms of constant coefficients L and M, the self- and mutual inductance coefficients,
respectively. However, the manner in which L and M come to appear in these equations, although understood, is not explicitly shown.
In what follows, the circuit equations are formulated from first principles using Faraday's law and convolution theory [17]. In doing so, the
correct solutions, which describe the transient currents flowing in the coupled driver and pickup circuits, are achieved and validated
experimentally. More importantly, expressions for L and M are shown to fall out of the theory naturally. This work is in preparation for
subsequent addition of other inductive elements. In particular, it will be shown in future work that additional inductance effects,
associated with the presence of ferromagnetic conducting structures, emerge from the theory.

2. Theoretical development

In consideration of what follows, a circular pickup coil is centered about the axis of a larger encircling driver coil. In accordance with
Maxwell's equations, a time-varying current flowing in the driver coil will induce a current in the pickup. The current induced in the
pickup gives rise to a transient magnetic field, which, in turn, generates an opposing current within the driver coil. The circuit equations
describing the resultant time-dependent currents i1 and i2 flowing in the driver and pickup coils, respectively, are written using Kirchhoff's
laws in the following general form:

R1i1ðtÞ ¼ vðtÞþε1ðtÞ ð1Þ

R2i2ðtÞ ¼ ε2ðtÞ ; ð2Þ
where v is any time-dependent excitation voltage – step, harmonic, multi-frequency, ramp, saw-tooth, etc. – R1 and R2 are the total circuit
resistances, and ε1 and ε2 are the total time-dependent voltages induced in the driver and pickup coils, respectively. Both ε1 and ε2 have
three components; one arising from the field generated by the driver coil, another from the field generated by the receiver coil and the
third from transient eddy current fields emanating from a conducting sample when present. A challenge in the development of analytical
transient eddy current models has been the inability to formulate expressions for these feedback terms.

In what follows, induced voltages ε1 and ε2 are expressed in terms of the unknown current functions i1 and i2 using convolution
integrals, and substituted back into the circuit equations. Beginning with Faraday's law, a voltage ε is induced within a current loop C, and
is proportional to the time-derivative of the magnetic flux normal to the area, S, enclosed by that loop such that [18]

εðtÞ ¼ � d
dt
∯ SBðr; z; tÞ � dS ; ð3Þ

where dS is the differential surface element. A magnetic vector potential formalism is adopted in order to take advantage of the circular
(azimuthal) symmetry of the problem. The magnetic flux density B is written as the curl of A, and in accordance with the Stokes' theorem,
the surface integral is recast into a contour integral. Finally, A contains only an azimuthal vector component and is symmetric about the
axis. Thus, the voltage induced within a current loop due to a time-varying vector potential is expressed as

εðtÞ ¼ � d
dt
∯ Sð∇� Aðr; z; tÞÞ � dS¼ � d

dt

I
C

Aðr; z; tÞ � dl¼ �2πr
d
dt
Aðr; z; tÞ : ð4Þ

For a circular multi-turn coil with a rectangular cross-section, the current loop expression in Eq. (4) is integrated over the cross-
sectional area of the coil Σ, and multiplied by a turn density so that

εðtÞ ¼ � 2πN
lðb�aÞ

d
dt
∯ ΣrAðr; z; tÞ dr dz ; ð5Þ

where N is the number of turns, l is the coil length, a and b are the inner and outer coil radii, respectively. The time-dependence of the
magnetic vector potential A is not explicitly known. It can, however, be expressed as the convolution of the system's unit impulse response
[17] with a yet unknown time-dependent current function such that

Aðr; z; tÞ ¼ Âðr; z; tÞ n iðtÞ �
Z τ

0
Âðr; z; t�τÞiðτÞdτ ; ð6Þ

where Â is the system's unit impulse response and A is the actual system response resulting from the onset of the time-dependent current
i. Thus, A inherits the time-dependence and relative magnitude of i, as expected. In an inductive system composed of m coils, there are m
unit impulse response solutions, associated with their respective current functions, existing in superposition. The straightforward
generalization of Eq. (6), which describes the total magnetic vector potential A in a multi-coil system, is

Aðr; z; tÞ ¼ Â1ðr; z; tÞ n i1ðtÞþ Â2ðr; z; tÞ n i2ðtÞþ…þ Âmðr; z; tÞ n imðtÞ ; ð7Þ
where the number in the subscript angle-brackets hi specifies the coil fromwhich the potential arises. Eq. (7) is substituted into (5) and the
total time-dependent voltage induced in the kth coil of a system ofm coils, now expressed in terms of the unknown current functions, may
be written as

ð8Þ
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