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A B S T R A C T

A theoretical model of the fluidelastic instability in tube arrays is presented in this article. It is developed for a
normal-square cylinder array and then extended to other types of array patterns. The model is based on transient
interactions between a single cylinder and the adjacent flow streams of single phase fluid. The central cylinder is
assumed to oscillate as a one-degree-of-freedom mass on a spring system in the lift direction only. A small
displacement of cylinder is assumed to perturb the surrounding interstitial flow, while as for higher displace-
ments the cylinder causes flow distortions in regular intervals. These disturbances are convected downstream
along with the interstitial flow. The waveforms of these flow distortions are assumed to interact with the array
pattern, thence modifying the fluid force acting on the cylinder. The critical flow velocity is obtained as a
function of mass ratio and damping parameter. The proportionality constant of the mathematical model is de-
rived in terms of the pitch ratio and Euler number. The mathematical development results in an implicit model
for the critical flow velocity. The model predictions are in a good agreement with experimental results.

1. Introduction

The flow-induced vibrations in the heat exchanger tube arrays ex-
hibit different mechanisms. The vibrations are generally classified
under, vortex-induced vibration, turbulent buffeting, acoustic vibration
and the fluidelastic vibration. The underlying mechanisms in the first
three types of vibration are well understood. The safe operating con-
ditions can be procured against these vibration types by appropriate
design guidelines. The exact mechanism underlying the fluidelastic
instability is relatively less understood. The damage due to the fluide-
lastic instability is generally severe and occurs within relatively short
time. The fluidelastic instability is extensively studied in order to ac-
curately understand and predict the critical velocity thresholds. The
presence of fluidelastic excitations in the context of cylinders was first
reported in Roberts (1962). The work of Connors (1970) and Connors,
1978 led to a simplified model for the fluidelastic instability,
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where, u f,pc n and D are the critical pitch (minimum gap) velocity,
natural frequency and the diameter of the cylinder respectively. The
non-dimensional critical pitch velocity is proportional to the mass m,
logarithmic decrement δ of the cylinder vibration in the non-dimension
forms with the exponent a. K is the constant of proportionality. ρ is the

fluid density. An enormous amount of work is carried out in terms of
experiments and theoretical models, since the work of Connors (1970),
in order to better understand and predict the phenomenon. The topic is
well reviewed in Païdoussis (1983), Weaver and Fitzpatrick (1988),
Pettigrew and Taylor (1991) and more recently in Païdoussis et al.
(2010, Chapter 5). A detailed review on the mathematical models of
fluidelastic instability is provided in Price (1995).

In this article, a new mathematical model for the fluidelastic in-
stability is presented. It is based on dynamic interactions between a
single cylinder and its adjacent fluid flow. The flow perturbations due
to the cylinder motion are modeled as waveforms on top of the inter-
stitial fluid flow. The flow streams carrying these perturbations interact
elastically with the cylinder, especially for the low mass ratio (m ρD/ 2).
The mathematical development and a procedure to estimate the critical
pitch velocity upc is formulated in the following sections. The model
predictions are compared with a set of experimental data listed in
Pettigrew and Taylor (1991) as well as with a large experimental data
reported in Païdoussis et al. (2010, Chapter 5)) for all the four array
patterns.

2. Theory

The cross flow in normal-square tube arrays forms a typical flow
pattern, which consists flow channels with varying cross-sectional area.
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The interstitial flow velocity varies depending on the cross-sectional
area. The flow accelerates between adjacent cylinders of a row (lower
cross-sectional area), while as it decelerates between the two rows of
cylinders (larger cross-sectional area). A motion of cylinder in the flow
normal (or lift) direction results in a decrease in the cross-sectional area
of an adjacent flow channel on one side of the cylinder, and at the same
time an increase in the cross-sectional area on the other side of the
cylinder. Consequently, the local flow velocity either increases or de-
creases accordingly. These perturbations are conveyed away from the
cylinder, mainly, in the downstream direction along the flow. These
perturbed flow channels dynamically interacts with the cylinder. The
mathematical model proposed in the following section is based on these
dynamic interactions between the flow streams and a cylinder of the
normal-square ( °90 ) array.

2.1. Mathematical model

The kernel of a normal-square ( °90 ) array is shown in Fig. 1. The
diameter and pitch distances are represented by D and P respectively.
The pitch ratio ( =∗p P D/ ) is the same in both the longitudinal (in-flow)
and transverse (flow-normal) directions. The inflow direction is shown
by the bold arrows. The central cylinder is assumed to oscillate in the
direction of the lift force only, designated here as flow normal direction.
The schematic physical representation of the mass on a spring is shown
in Fig. 1, where k c, stand for the cylinder stiffness and damping re-
spectively. The mass per unit length of the cylinder is represented by m.
The mass includes the hydrodynamic mass of the fluid medium at rest.
Similarly the stiffness (k) and damping (c) coefficients are defined with
respect to the quiescent fluid medium. Eq. (2) represents the motion of
the cylinder in the flow normal direction. y is the instantaneous dis-
placement of cylinder in this direction. t represents the time. The right
hand term of the equation is a sinusoidal fluid force with an amplitude
fy per unit length of the cylinder and an angular periodicity (ωsh) as-
sociated with the force.
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where ̂ = −ı 1 . Using the definitions of the natural angular frequency
(ωn) and damping ratio (ζ ) of the cylinder, =ω k m/n and =ζ c km/2 ,

Eq. (2) can be written as,
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The general solution can be given as,

̂= − +y Ye ı ω t θ( )sh (4)

where, Y is the magnitude of cylinder oscillations, while as θ is the
phase difference between the fluid force and the cylinder response (y).
The magnitude (Y) can be obtained by solving Eqs. (4) and (3).
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By equating the real and imaginary parts, we can obtain,
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The unsteady response amplitude (Y) of the cylinder is directly
proportional to the magnitude of the fluid force fy and it is inversely
proportional to the mass and damping terms. The phase difference (θ),
between the fluid force acting on the cylinder and cylinder displace-
ment is considered as an important component of the fluidelastic in-
stability, particularly in the theoretical models based on Lever and
Weaver (1982). The exact physics of the phase lag (θ) is not well un-
derstood (Khalifa et al., 2013). The phase lag is approximated by using
an expression based on a hydraulic analogy in Lever and Weaver
(1982). In Eq. (7), the phase lag (θ) is eliminated in the derivation of the
displacement amplitude (Y), although its effect is incorporated in the
square-root term.

The fluid force ( fy) in Eq. (7) can be expressed in terms of the pitch
velocity (up) by an empirical relation as,
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where, Euy is an instantaneous component of the Euler number in the
transverse direction. The Euler number in heat exchanger designs is
commonly defined as,
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where, pΔ row is an instantaneous pressure drop across a row of an array
and 〈 〉· represents ensemble averaging operation. An instantaneous
Euler number in the flow direction can be given as,
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Similarly, the flow normal component of the Euler number Euy is as-
sumed to be based on the instantaneous pressure drop in the lift di-
rection, pΔ y, across the cylinder. By using Eq. (8) in Eq. (7),
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The term in the square root acts as a mechanical impedance, which
signifies the resistivity of the cylinder to the imposed harmonic force.

Fig. 1. The kernel of a normal-square cylinder array.
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