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A B S T R A C T

This paper investigated the influence of various types of spatial interpolation algorithms in the reactor in-core
power distribution reconstruction. These algorithms include different kinds of kernel function used in radial
basis function (RBF) methods or support vector machine regression (SVR) methods, different orders of poly-
nomial trend surface analysis (TSA), and various forms of distance weight average (DWA) methods, geo-statistics
interpolation method. A typical pressurized water reactor core with 157 fuel assemblies and 33 measurement
instruments located is analyzed. The validations of these methods under the measurement core status and
predictive core status have been provided. The criterions of relative root mean square error (RRMSE) have been
applied to guarantee the accuracy of these algorithms. The comparison of the different spatial interpolation
algorithms shows that the DWA basis methods usually perform much better and stable than other methods. PEM
and SVR methods have very poor performance in high signal deviation situation, but they can effectively
eliminate measurement error in the opposite situation. The fitting methods TPS0, PEM4 could not be used in in-
core power distribution reconstruction (IPDR). TPS1 is the best choice for no parameter RBF methods. While for
other RBF basis methods, optimization algorithm should be used to search the optimized model parameters. The
performance of RBF_TPS1, DWA_OK, SVR_Gauss, RBF_Gauss fall into a same group. Three-dimension surfaces of
fitting results are compared. The factors are discussed that affect the reconstructed results of the methods,
including detectors number, detectors design pattern and detector measurement properties, variability of the
fitting surface. Suggestions to select an appropriate spatial interpolator method are provided.

1. Introduction

In-core flux mapping or core power distribution monitoring is one of
the essential functional requirements in core surveillance and analysis.
The detailed in-core flux and power distribution, as well as the para-
meter key to core safety analysis are calculated on-line. Most com-
mercial nuclear power plants in operation are equipped with in-core
detectors to obtain power distribution. Many kinds of the on-line Core
Monitoring Systems (CMS), such as BEACON (Boyd and Miller, 1996),
GNF-ARGOS (Tojo et al., 2008), and SOPHORA (Wenhuai et al., 2014)
have been developed to best estimate in-core power distribution using
fixed in-core detectors (FID) or movable in-core detectors combined
with the other temperature and pressure measurement devices. Based
on the “best estimate” core simulation, these CMS can survey core
power distribution and thermal limits such as the minimum departure
from nucleate boiling ratio, and detect the anomalies such as dropped/
misaligned rods, fuel misloading and xenon oscillation.

Many computational methods have been developed for in-core

power distribution reconstruction (IPDR). The coupling coefficient (CC)
(Karlson, 1995) method is applied in the C-E CECOR (Terney et al.,
1983) flux-mapping code to estimate the power distribution, and the
two-dimensional assembly’s power coupling coefficients are pre-calcu-
lated. The three-dimensional coupling coefficient method (Jang et al.,
2004) and the Lagrange multiplier method (Webb and Brittingham,
2000) are proposed, respectively to improve the reconstructed precision
of the CC method. The MAPLE (Wenhuai et al., 2013) code proposed
three methods to fit the 2D deviation between measured and predicted
results, namely, weight coefficient method (WCM), polynomial expand
method (PEM) and thin plane spline (TPS) method. The ordinary kri-
ging (OK) method was proposed by Peng et al. (2014), which is one of
the most common methods employed in geo-statistical. A kind of har-
monics synthesis method (HSM) was proposed by Fu (1994) to express
the flux distribution of the real core by the linear combination of higher
order harmonics of neutron k-eigenvalue equation of the nominal core.
However, the accuracy of HSM relies on the calculation precision of
harmonics function. A least-squares method combining the coarse mesh
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finite difference (CMFD) form of the fixed-source diffusion equation
and the detector response equation has been proposed (Lee and Kim,
2003). The reconstruction results of this method are accurate, but it
could be used only in neutronics design codes that base on the finite
difference method or CMFD method. A new intuitive method based on
cross-section deviation (Jia, 2016) was proposed by searching cross-
sectional parameters and solving diffusion equations which owing
power deviation to assembly equivalence cross-section deviation. The
essence of the method is to convert the power distribution re-
configuration to a search optimization problem, using the cross-sec-
tional parameters as independent variables and the detector responding
as the objective function. However, it’s hard to find the right key factors
in so many influences, which could lead to the deviation between cal-
culated and measured values, such as xenon oscillation or in-
homogeneous of inlet flow distribution.

In this paper, some spatial interpolation methods are introduced
and applied in IPDR for the first time, such as surface fit basis on radial
basis function (RBF) (Hickernell and Hon, 1999) or support vector
machine regression (SVR) methods (Adankon and Cheriet, 2009). Nu-
merous methods have been developed for spatial interpolation.
Methods used in this paper are only those commonly used and could
directly extent to IPDR studies. These spatial interpolation methods are
briefly described. They are divided into categories: surface fitting
methods and the distance weighted average (DWA) methods. In the
context of spatial fitting approaches used in IPDR, no studies appear to
compare various approaches that combine different variations of fitting
method, and under various core operational conditions. The aim of this
study is to test algorithms for spatial interpolation used for IPDR within
these two approach frames. Several factors which could affect the
performance of the reconstruction methods are also discussed. Different
reactor core operation incidents have been analyzed to assess the ability
to detect the core status anomalies. Another aim is to assess the per-
formances of different spatial fitting method to eliminate detector
measurement noise. Finally, recommendations are given for applying
spatial interpolation methods to IPDR.

2. Computational model

SOPHORA system (Wenhuai et al., 2014) could process the mea-
sured signals on-line, including core condition parameters and the FID
current reading. A predicted core is created by incorporating the
measured core condition with the core follow power history. The dif-
ference between the measured and predicted FID current represents a
bias between the measured core and predicted core, and is used to infer
the predicted power distribution to a “best estimate” measured power
distribution (Wenhuai et al., 2013). It is assumed that the ability of a
nodal code such as COCO(Lu et al., 2012) to accurately predict the

signal distribution should be equal to the ability of the same code to
accurately predict the power distribution (Wenhuai et al., 2013). The
ratios between the measured signal distribution and the predicted
signal distribution stand for the ratios between predicted core power
distribution calculated by algorithms and models used in nodal code
and the real core power distribution.

2.1. Surface fit basis interpolation method

Let the ratio data be sampled at N location =X j N, 1,j and let the
corresponding ratio values be =p j N, 1, .j The value p at unknown
location X is estimated as a function approximation of the form:

∑= +
=
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j
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where T X( ) is over-core trend function term, R X X( , )j is a kernel
function term used to evaluate the contribution from sampled point Xj
to unknown location X , aj is weight coefficient. If aj is zero, method
could be equal to trend surfaces analysis (TSA) method. Under various
assumption, differentT X( ) and R X X( , )j could be raised up in RBF basis
approaches or SVR basis approaches. In this study, different kernel
functions were chosen including: TPS0 method as rlog( ); TPS1 method
as r rlog( )2 ; Linear method as r ; Cube method as r3; Gauss method as

−e r a/2 2; inversed multi-quadrics (IMQ) method as +r a1/ ( )2 2 ; Poly
function as +b r( )a, where a and b are the model parameters.

1) Radial basis function approaches

The RBF basis approaches contain the methods using radial basis
function to fit an overall surface and then interpolate on the un-sampled
points (Hickernell and Hon, 1999). Consider the three-dimension core
power distribution interpolated, the trend function with first order
polynomial is expressed as:
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other constraints are expressed as:
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2) Support vector regression approaches

Support vector machine (Adankon and Cheriet, 2009) is a machine
learning algorithm. SVR is formed based on statistical learn theory and
the structural risk minimization, which improves the generalization
ability (Cortes and Vapnik, 1995). For SVR fitting, the trend function is

Nomenclature

CMS core monitoring systems
FID fixed in-core detectors
IPDR in-core power distribution reconstruction
CC coupling coefficient
WCM weight coefficient method
PEM polynomial expand method
TPS thin plane spline
OK ordinary Kriging
HSM harmonics synthesis method
CMFD coarse mesh finite difference
RBF radial basis function
SVR support vector machine regression
DWA distance weighted average
IMQ inversed multi-quadrics

LM linear regression
IDW inverse distance weight
IDL inverse distance linear
IDS inverse distance squared
IDF inverse distance forth
KNN K-nearest neighbor
MS modified Shepard’s method
IQW inversed quantic weight
RRMSE relative root mean square error
ARO all rods out
FP full power
BOC begin of cycle
MOC middle of cycle
CRDA control rod drop into core accident
EOC end of cycle
DMU detector measurement uncertainty
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