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A B S T R A C T

A new formalism is presented in this paper for solving the inverse point kinetics equations with six groups of
delayed neutron precursors using Haar wavelet and estimation of feedback reactivity coefficient from the ob-
served power transient under background noise. The Haar wavelet transforms the inverse point kinetics equa-
tions into a set of linear equations and these equations can be solved easily. Using this method the reactivity
required for a desired power transient is obtained and also the feedback reactivity and the temperature coef-
ficient of reactivity involved in the observed power transient are estimated for various background noise levels.
This method is tested in two ways, i.e. (i) to estimate the reactivity required for different types of power
transients in thermal reactor as well as in Indian Prototype Fast Breeder Reactor (PFBR) and (ii) to estimate the
feedback reactivity and the temperature coefficient of reactivity involved in the power transients of thermal as
well as Indian PFBR. In the case of Indian PFBR, the temperature coefficient of reactivity is estimated for various
background noise levels in power transients. It is observed that as the noise level is reduced, the accuracy in the
estimation of temperature coefficient of reactivity is increased. It is also shown that using Haar wavelet with
beamforming, the temperature coefficient of reactivity can be estimated to a good accuracy even under high
background noise. In this method the estimated feedback reactivity and the temperature coefficient of reactivity
are found to be in good agreement with reference values. From the comparison of results it is observed that this
method is efficient in estimating the reactivity required for different types of desired power transients in thermal
as well as in fast reactors and this method is also efficient in estimating the temperature coefficient of reactivity
under high background noise. This method is effective and simple to use.

1. Introduction

The time-dependent behavior of nuclear reactors is qualitatively
described by the neutron density and the kind of reactivity acting on the
reactor. Any deviation from the steady state behavior of nuclear reactor
will result in the change of neutron density with time, which in turn
will alter the power level. It is important from the safety point of view
to monitor the neutron density and reactivity inside the reactor core
during normal and accidental conditions. Generally the power tran-
sients, following any addition or removal of reactivity in small reactors,
are investigated by solving the point kinetics equations with feedback.
In the similar way the reactivity required for a desired power transient
is obtained by solving the inverse point kinetics equations. For instance,
in a postulated accidental scenario during reactor start-up, the un-
controlled movement of control rod may cause power transient and
from the observed power transient, it is possible to estimate the kind of
reactivity that might have caused the power transient, by solving the
inverse point kinetics equations. The solution of inverse point kinetics

equations with feedback is helpful in estimating the feedback reactivity
coefficients acting on the reactor. The feedback reactivity coefficients
are important in determining the average fuel pin temperature, clad
and moderator temperatures. The peak fuel pin temperature decides the
fuel integrity. The inverse point kinetics equations are also important in
the design of reactivity meter, an instrument in nuclear power plant
system, which calculates the reactivity acting on the reactor from the
observed power transient. Generally background noise interferes in the
measurement of power transients and in real-time scenario, it becomes
equally important to solve the inverse point kinetics equations with
feedback and background noise to estimate the kind of reactivity acting
on the reactor.

The solution of inverse point kinetics equations requires the dis-
cretization of integral term associated with the precursor concentration.
This discretization requires the power history (Shimazu et al., 1987;
Hoogenboom and Van Der Slujis, 1988; Ansari, 1991). One can also use
discrete Laplace transform technique to solve the inverse point kinetics
equations (Diaz et al., 2008). Hamming method (Diaz et al., 2012) can
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also be used to solve the inverse point kinetics equations without re-
quiring the power history. In this work, the inverse point kinetics
equations are solved using Haar wavelet and the reactivity required for
the desired power transient in thermal as well as in Indian Prototype
Fast Breeder Reactor (PFBR) is estimated. By applying Haar wavelet,
the inverse point kinetics equations are converted into linear equations
and the linear equations can be solved with less computational effort to
estimate the reactivity from the observed power transient. This method
is used to estimate various types of reactivity perturbations, i.e. step,
ramp, oscillatory and pulsed reactivity from the power transient. This
method is also applied to estimate the temperature coefficient of re-
activity from the power transients of thermal and Indian PFBR. In the
case of Indian PFBR, the temperature coefficient of reactivity is esti-
mated using synthetic power transients with various background noise
levels. It is observed that as the background noise level is increased in
the measurement of power transient, the accuracy in the estimation of
temperature coefficient of reactivity is reduced and it is a natural
phenomenon. But even in high background noise also, the temperature
coefficient of reactivity can be accurately estimated by beamforming
(Van Veen and Buckley, 1988) the power transients from different
channels. Beamforming is done by averaging the signals from different
channels with appropriate time delay. The beamforming technique re-
duces the noise. In the case of Indian PFBR, the synthetic power tran-
sients with high background noise levels are beamformed and the
beamformed power transient is used to estimate the temperature
coefficient of reactivity. In this case, while beamforming the power
transients from different channels, it is assumed that there is no time
delay. The estimated temperature coefficient of reactivity of the Indian
PFBR, after beamforming, is found to be in good agreement with the
reference value. It is also shown that as the number of channels in the
beamforming is increased, the accuracy in the estimation of tempera-
ture coefficient of reactivity is improved. From the comparison of re-
sults, it is established that this method can be used to estimate the
feedback reactivity and temperature coefficient of reactivity to a good
accuracy from the observed power transients in thermal as well as in
fast reactors with high background noise. This method is easy to im-
plement and this method may be used in the real-time estimation re-
activity from the observed power transient.

2. Inverse point kinetics equations

The point kinetics equations, describing the time evolution of re-
actor power for a desired reactivity insertion, ρ(t), is given as (Duderstat
and Hamilton, 1976; Bell and Glasstone, 1970).
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In the above equation P(t) is the power, ρ(t) is the reactivity acting
on the reactor, βj is the effective fraction of jth group of delayed neu-
trons, Cj(t) is the jth group of delayed neutron precursor density and β is
the total fraction of delayed neutrons.

The reactivity ρ(t) necessary for causing the desired power transient
P(t) can be obtained from the inverse point kinetics equation as
(Duderstat and Hamilton, 1976).
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Solution of Eqs. (3) and (4) gives the reactivity required for the
desired power transient P(t). Here we make use of Haar wavelet for

solving Eq. (4) and the solution is used in Eq. (3) to get the reactivity for
the desired power transient P(t).

3. Haar wavelet and solution of inverse point kinetics equations

In the recent years, the wavelet approach has become an important
field in the numerical solution of differential equations. Different types
of wavelets and approximating functions have been used in the nu-
merical solution of initial and boundary value problems (Lepik 2005,
2007). Wavelets are basis functions, constructed from translation and
dilation of mother wavelet. The scaling function for the family of the
Haar wavelet, (in the interval [0, 1]) is defined as

= ⎧
⎨⎩

∈h t t
otherwise

( ) 1 [0,1]
01

(5)

The mother wavelet h2(t) is defined as (t ∊ [0, 1])
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All other wavelets can be generated using dilation and translation of
the mother wavelet. In general, the Haar wavelet family can be defined
for any time interval t ∊ [α, β]. The integration of Haar functions is
defined as
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The recurrence relation for pi,ν(t) is given as
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Any piecewise constant square integrable function y(t), can be ex-
panded using Haar wavelets (Lepik, 2005, 2007) as

∑=
=

y t a h t( ) ( )
i

M

i i
1

2

(8)

where ai are the Haar wavelet coefficients, M=2J, J is the maximum
order of resolution of wavelet and the collocation points are defined as
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Haar wavelets are effective in solving ordinary and partial differ-
ential equations (Lepik, 2009). Here we apply the Haar wavelet in
solving the inverse point kinetics equations for reactivity calculation.
The precursor concentration equation, Eq. (4), is expanded into Haar
wavelets as
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The initial conditions are given as
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From Eq. (10) the delayed neutron precursor concentration Cj(t) can
be obtained as
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Substituting Eqs. (10) and (11) into Eq. (4) we get
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Using Haar wavelets, the equation governing the precursor con-
centrations (Eq. (4)) is converted into linear equations (Eq. (12)) and
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