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A B S T R A C T

In nuclear reactor system design and safety analysis, the Best Estimate plus Uncertainty (BEPU) methodology
requires that computer model output uncertainties must be quantified in order to prove that the investigated
design stays within acceptance criteria. “Expert opinion” and “user self-evaluation” have been widely used to
specify computer model input uncertainties in previous uncertainty, sensitivity and validation studies. Inverse
Uncertainty Quantification (UQ) is the process to inversely quantify input uncertainties based on experimental
data in order to more precisely quantify such ad-hoc specifications of the input uncertainty information.

In this paper, we used Bayesian analysis to establish the inverse UQ formulation, with systematic and rig-
orously derived metamodels constructed by Gaussian Process (GP). Due to incomplete or inaccurate underlying
physics, as well as numerical approximation errors, computer models always have discrepancy/bias in re-
presenting the realities, which can cause over-fitting if neglected in the inverse UQ process. The model dis-
crepancy term is accounted for in our formulation through the “model updating equation”. We provided a
detailed introduction and comparison of the full and modular Bayesian approaches for inverse UQ, as well as
pointed out their limitations when extrapolated to the validation/prediction domain. Finally, we proposed an
improved modular Bayesian approach that can avoid extrapolating the model discrepancy that is learnt from the
inverse UQ domain to the validation/prediction domain.

1. Introduction

During the last four decades, the importance of computer simula-
tions has increased dramatically in furthering our understanding of the
responses of engineered systems in real world. Large computer codes
that implement complex mathematical models have been successfully
applied in the design and performance assessment of real systems in
many areas of scientific research. Computer modeling is especially
significant to the nuclear engineering community, as physical experi-
mentations are usually too costly or sometimes impossible.

1.1. Essential components of modeling and simulation

To bring up the motivation to perform inverse Uncertainty
Quantification (UQ), we first briefly establish the definitions of some of
the essential components that are used in the credibility evaluation of
computer models. Note that these terminologies are widely used and fre-
quently defined in many previously publications. The following definitions
are based on the authors’ understanding and only used for this work.

1) Verification: “the process of determining that a model implementa-
tion accurately represents the developer’s conceptual description of
the model and the solution to the model” (Oberkampf and Trucano,
2002, p. 215). In other words, verification aims to identify, quan-
tify, and reduce errors during the mapping from mathematical
model to a computer code.

2) Code verification: the process to access the reliability of the software
coding, which includes two activities, numerical algorithm verifica-
tion and software quality engineering (SQE) (Oberkampf and Roy,
2010). In other words, code verification deals with adequacy of the
numerical algorithms and the fidelity of the computer program-
ming to implement these algorithms.

3) Solution verification: also referred to as calculation verification (Trucano
et al., 2006), or numerical error estimation (Oberkampf and Roy, 2010),
is the process to evaluate the numerical accuracy of the solutions to a
computer code. The primary difference between code and solution
verification is that there is generally no known exact solution to the
system of interest for the latter. Solution verification strongly depends
on the quality and completeness of code verification, and both
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processes should be performed prior to validation, as defined below.
4) Validation: “the process of determining the degree to which a model

is an accurate representation of the real world from the perspective
of the intended uses of the model” (Oberkampf and Trucano,
2002), p. 215). In other words, validation aims to determine the
degree of accuracy of the considered model in representing real
world phenomena. Verification and Validation together are often
termed “V&V”.

5) Forward UQ: the process of quantifying the uncertainties in
Quantity-of-Interest (QoIs1) by propagating the uncertainties in
input parameters through the computer model (Cacuci, 2003;
Smith, 2014). QoIs predictions along with uncertainties are ne-
cessary for validation.

6) Sensitivity analysis (SA): the study of how uncertainties in the QoIs
of can be apportioned to various random input parameters (Saltelli
et al., 2008). SA provides a ranking of the input parameters by their
significance to QoIs.

7) Optimization: the process of maximizing or minimizing an objective
function by systematically choosing input values from within an
allowed set (Forrester and Keane, 2009; Queipo et al., 2005).

8) Calibration: the process of adjusting a set of input parameters im-
plemented in the code so that the agreement of the computer code
predictions with corresponding experimental data is maximized
(Trucano et al., 2006).

9) Data assimilation: the process to incorporate observations of the
actual system into the model state of a numerical model of that
system (Evensen, 2009). Data assimilation can be treated as the
calibration of dynamic models, which arise in many fields of
geosciences such as weather forecasting.

10) Benchmark: “A benchmark is a choice of information that is be-
lieved to be accurate or true for use in verification, validation or
calibration” (Trucano et al., 2006, p. 1333). For example, bench-
marks can be measurements of QoIs from physical experiments or
solutions from highly accurate numerical tests.

Fig. 1 shows the connections between some of these essential
components of computer modeling. From Fig. 1 it is obvious that the
forward UQ process always starts with characterization of the input
uncertainties, for example, the mean values, variances, Probability
Density Functions (PDFs), upper and lower limits, etc. Unfortunately,
such information is not always readily available to the code users. Such
condition is known as the “lack of input uncertainty information” issue.
Up to now, in the uncertainty, sensitivity and validation studies of
nuclear engineering, “expert opinion” or “user self-assessment” have
been predominantly used (see reviews in (Wu and Kozlowski, 2017; Wu
et al., 2017). Such ad-hoc specifications of input uncertainty informa-
tion have been considered reasonable for a long time. However, these
approaches are subjective and lack mathematical rigor, and can lead to
inconsistencies.

The “lack of input uncertainty information” issue necessitates the
research on inverse UQ. An early appearance of the term “inverse UQ”
can be found in (Oberkampf and Trucano, 2002), in which it was also
termed “backward problem”. Other researchers have called it “inverse
uncertainty propagation” (Unal et al., 2011). According to Oberkampf
and Trucano, “The backward problem asks whether we can reduce the
output uncertainty by updating the statistical model using comparisons
between computations and experiments” (Oberkampf and Trucano,
2002, p. 256). In this paper, we will introduce the theory for inverse UQ
under the Bayesian framework in an evolving manner, including the
Bayesian formulation for inverse UQ, Gaussian Process (GP) metamo-
deling, full and modular Bayesian approaches, and finally an improved
modular Bayesian approach.

1.2. Inverse UQ vs. calibration

Inverse UQ, also referred to as inverse problem or parameter estima-
tion, is the process to quantify the uncertainties of input parameters
based on chosen experimental data. Such definition looks very similar
with calibration. In this section we briefly discuss the relationship be-
tween inverse UQ and calibration.

Calibration can be classified as deterministic and statistical cali-
bration (Campbell, 2006). Deterministic calibration merely determines
the point estimates of best-fit input parameters such that the dis-
crepancies between code output and experimental data can be mini-
mized. However, statistical calibration, sometimes referred to as Bayesian
calibration (Kennedy and O'Hagan, 2001); probabilistic inversion (Van
Oijen et al., 2005) or Calibration under Uncertainty (CUU) (Trucano
et al., 2006), produces statistical descriptions like distributions. In this
sense, inverse UQ is same with Bayesian calibration and indeed they do
share the same techniques. For example, both of them employ the
Bayesian inference theory (Gelman et al., 2014) and explore the pos-
terior PDF with Markov Chain Monte Carlo (MCMC) sampling (Gilks
et al., 1995). They both favor surrogate models when the computational
models are expensive. So what makes inverse UQ in the current study
different from Bayesian calibration?

Inverse UQ only has very subtle differences with Bayesian calibra-
tion, (1): inverse UQ includes some techniques that implements the
Expectation-Maximization (E-M) algorithm (Shrestha and Kozlowski,
2016) rather than sampling of the posterior PDF, even though the
former is not as widely applicable as the latter; (2): they are usually
performed with different motivations. Bayesian calibration aims at re-
ducing the difference between simulation and observation, while in-
verse UQ emphasizes quantifying the input uncertainties. When the
model outputs already agree very well with experimental data, we may
conclude that no calibration is needed. However, the inverse UQ is still
useful because the underlying uncertainties in model input parameters
have to be quantified. Fig. 2 illustrates such a case, when the differences
between simulation and measurement approximately follow Gaussian
noise with a very small variance. In that case, calibration is unlikely to
improve the agreement between simulation and observation. In es-
sence, in cases where there is no need to do Bayesian calibration, in-
verse UQ may still be useful.

The advantage of inverse UQ (or Bayesian calibration) over de-
terministic calibration and “parameter tuning” is apparent: (1): firstly,
information on QoIs from experiments is never sufficiently accurate to
allow inference of the “true” or “exact” values of the input parameters.
Instead, we can only hope to reduce our ignorance of the parameters by
achieving less uncertainties in them (the so-called uncertainty reduc-
tion); (2): furthermore, it is difficult for deterministic calibration to
quantify correlations between different calibration parameters.
Correlations are usually calculated based on samples but deterministic
calibration only produce point estimates of best-fit values; (3): thirdly,

Fig. 1. Some essential parts of modeling and simulation (a non-exclusive list).

1 In some contexts, QoIs sometimes refer to inputs. In this work, QoIs only refers to the
outputs, also called the Responses of Interest (RoIs).
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