
Contents lists available at ScienceDirect

Nuclear Engineering and Design

journal homepage: www.elsevier.com/locate/nucengdes

Sensitivity of the damping controlled fluidelastic instability threshold to
mass ratio, pitch ratio and Reynolds number in normal triangular arrays

Beatriz de Pedro Palomara, Craig Meskellb,⁎

a School of Engineering, Univeristy of Oviedo, Spain
b School of Engineering, Trinity College Dublin, Ireland

A R T I C L E I N F O

Keywords:
Fluidelastic Instability
Heat exchanger
Tube arrays

A B S T R A C T

Sensitivity of the damping controlled fluidelastic instability threshold of normal triangular tube arrays has been
investigated through a theoretical-CFD hybrid methodology without the need for experimental data. The quasi-
unsteady model with a theoretical model of the memory function was used to predict the critical velocity with
the static fluid force coefficients obtained from steady RANS simulations. Five normal triangular tube arrays with
pitch to diameter ratios of 1.25, 1.30, 1.32, 1.375 and 1.44 were investigated. Pressure on the tube surface for
the =P d/ 1.32 array, predicted by the CFD, was compared with empirical measurements from the literature.
Force coefficients obtained with the validated numerical model, were used to predict stability thresholds for the

=P d/ 1.25 and =P d/ 1.375 tube arrays and the results were compared with previously published experimental
critical velocities. The validated theoretical-CFD hybrid methodology was used to analyze and quantify the
critical velocity specific dependence on three parameters: mass ratio, Reynolds number and pitch ratio. As
expected, the pitch ratio has the most effect on the critical velocity. It was found that increased Reynolds number
increases the stability threshold over the whole range of mass-damping parameters, but mass ratio has only a
very minor effect, and this is confined to high mass-damping values.

1. Introduction

Flow-induced vibration (FIV) can be a major problem in large heat
exchangers leading to shut down or even decommissioning. While
turbulent buffeting and the associated wear represents a limit on the
long term integrity of these assemblies, fluidelastic instability (FEI) can
lead to failure in the short term. As a result, FEI represents a limitation
on the operational parameters of the unit. One particular mechanism of
FEI, so-called damping controlled instability, can occur when a single
flexible tube is subjected to cross flow, even within an otherwise rigid
array. It is this mechanism which is the focus of the current study. An
exhaustive review of the literature on damping controlled fluidelastic
instability in normal triangular tube arrays is beyond the scope of this
paper, but a comprehensive introduction to FEI in tube arrays can be
found in, for example, Chapter 5 of Paidoussis et al. (2011) and a re-
view of available models for specifically for damping controlled flui-
delastic instability is given by Price (1995). Broadly speaking, any of
the available models require some experimental input or tuning. For
example, even one of the most theoretical the framework proposed by
Lever and Weaver (1986) requires the gross flow path between adjacent
tubes, and when it is extended to predict damping controlled instability

(Yetisir, 1993) an empirical delay function is necessary.
Previous models of FEI and schemes for collapsing experimental

data sets of critical velocity have assumed that the Reynolds number
and mass ratio have no effect on levels of critical velocity. However,
there is some experimental evidence that this may not be the case
(Mewes and Stockmeier, 1991). Price (2001) in his discussion of the
applicability of the Connors equation noted that a complete model of
FEI should also include a Reynolds number dependency. Mahon and
Meskell (2012) have shown that a Reynolds number dependency is
necessary to achieve agreement between the Connors type equation and
the quasi-steady model. Harran (2014) pointed out the influence of the
mass ratio, in an asymptotic approach for the theoretical situation of an
undamped structure.

The viability of using CFD, computational fluid dynamics, to obtain
non-dimensional force coefficients, as well as other previously empiri-
cally determined quantities, and then introduce them into a theoretical
framework to obtain stability thresholds, has been investigated by
several authors. Harran et al. (2010) investigated pitch to diameter
ratio and Reynolds Number effects on critical velocity for in-line tube
arrays by obtaining coefficients for a unsteady the semi-empirical
model framework of Chen (1983) from numerical simulations. Khalifa
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et al. (2013) investigated the interaction between tube vibrations and
flow perturbations at lower reduced velocities and Reynolds numbers,
coupling numerical predictions of the phase lag and the semi-analytical
wavy wall model (Lever and Weaver, 1986; Yetisir, 1993) to predict the
reduced critical velocity. Anderson et al. (2014) developed a model to
account for temporal variations in the flow separation for in-line arrays.
These types of study offer an interesting alternative to experimental
testing which is limited for physical and economical reasons, allowing
more extensive investigation of parameter effects in the reduced critical
velocity.

This study will use steady CFD calculations of the fluid force coef-
ficients on a displaced tube within an array to predict the critical ve-
locity, using the quasi-unsteady model of Granger and Paidoussis
(1996) with the memory function obtained from the wake model pro-
posed by Meskell (2009). The approach is applied to single-phase flow,
but it is conceivable that the approach could be adapted to two-phase
flow if an appropriate model of two-phase damping is adopted, and an
equivalent parameter to Reynolds number could be well defined.

Gillen and Meskell (2009) completed a preliminary study using a
similar approach, demonstrating that the scheme was promising.
However, that study had significant flaws: the simulations suffered
from flow instability in the far wake; only two geometries were simu-
lated; and the range of parameters investigated was small. It is im-
portant to note that the objective in this study is not to advance a
method of determining the critical velocity per se. Rather, the goal of
the current study is to investigate the dependence of the critical velocity
on mass ratio and Reynolds number.

2. Methodology

Consider a single flexible tube in an otherwise rigid array. It will be
assumed that the this tube is free to move only in the transverse di-
rection (i.e. perpendicular to the mean bulk flow) and that the structure
can be represented by a single degree of freedom model. This excludes
the possibility of (coupled mode) stiffness controlled instability. In
addition, streamwise instability is not possible.

The fluidelastic force E that a tube in an array is subjected to, can be
expressed by the governing equation of motion

+ + =m y c y k y F y y y U¨ ̇ (¨, ,̇ , )s s s y 0 (1)

The quantities m c,s s and ks are the structural mass, damping and
stiffness respectively. The effects of both turbulent buffeting and vortex
shedding have been omitted as it is assumed that they do not change the
stability behaviour of this model. This superposition effectively assumes
that the dependency of the fluid force on the tube displacement is linear
at low amplitudes (i.e. at the onset of instability). Note that if the post-
stable behaviour was of interest (i.e. the limit cycle amplitude) then a
more sophisticated approach would be needed, but as the focus of this
study is the onset of instability, the simplification of a linear relation-
ship with displacement is acceptable. Meskell and Fitzpatrick (2003)
demonstrated that the fluidelastic stiffness and damping were cubic in
displacement and tube velocity respectively. As a result, the onset of
dynamic instability will be governed by the linear parameters. This is
generally true in non-linear system dynamics, for example see Chapter
3 of Virgin (2000). Furthermore, these assumptions are widely made in
models of fluidelastic instability. For example, Price and Paidoussis
(1984) and Lever and Weaver (1986) implicitly assume that the only
fluid force is due to tube displacement.

As the full detail of the fluidelastic force function, Fy, is unknown,
various models have been developed. One such model used the quasi-
steady approach (Price and Paidoussis, 1984), which assumes the force
on the oscillating tube at any moment in time is equal to the force it
would experience at that static displacement, but subject to a time lag.
This model was later improved upon by Granger and Paidoussis (1996),
by replacing the time lag as a function spread over time. In this quasi-
unsteady model, the relationship between the instantaneous fluid forces

and the static lift and drag force coefficients is
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The terms of this equation consist of tube diameter, d, and length, L;
the fluid density ρ; freestream velocity, U; and the mass, lift and drag
coefficients (C C,M L and CD respectively). The tube displacement y is
convolved with the delay function h. The drag, which would normally
only be considered for forces in the x direction is included due to the
quasi-steady assumption which rotates the fluid force system to be
aligned with the instantaneous apparent flow direction. It is worth
noting that the strict requirement for the application of the quasi-steady
assumption as stated by Van Oudheusden (1995) is that it is possible to
“define a steady situation (in which the structure is in rest with regard
to some suitably chosen reference frame) which is aerodynamically
equivalent to the unsteady situation”. But this cannot be met in a tube
array because of the proximity of the neighbouring tubes. Nonetheless,
it is clear that there should be a positive damping associated with the
fluid which will be modified by flow, and so the quasi-steady assump-
tion is included as an imperfect model of this stabilizing effect as its
influence is smaller when compared to the influence of the time delayed
lift. The convolution integral can be represented as

∫∗ = −h y h τ τ y τ dτ( ) ( )
τ
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with h representing the memory function

=h τ d
dτ
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where =τ tU
d is the non-dimensional time. The convolution can also be

thought of as a low pass filter and so that any response to any vortex
shedding and most turbulent excitation will be attenuated, further
justifying the assumption in Eq. (1) to ignore these excitation me-
chanisms. The transient evolution of this memory function, which is
essential for damping controlled FEI, is determined by the function Φ.
This transient function converges monotonically towards 1 as τ ap-
proaches infinity (Granger and Paidoussis, 1996). Without loss of
generality, it can be represented this as a series of decaying ex-
ponentials:
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Granger and Paidoussis (1996) quantified the parameters αi and βi
by fitting the model response to experimental data of critical velocity in
a normal triangular array subject to cross flow. Li and Mureithi (2016)
have quantified these parameters for a parallel triangular array, also by
comparison with experimental data, although the main focus of their
study was the development of a frequency domain formulation,
equivalent to a Theodorsen function. However, Paidoussis et al. (2011)
pointed out that using experimental data to determine the detail of the
memory function increased the need for empirical data, largely ne-
gating the benefit of a model. Meskell (2009) has proposed a wake
model to predict theoretically the values of α1 and β1 for a first order
model, i.e. =N 1 in Eq. (5).

This wake model approach assumes that the memory function is the
normalized instantaneous bound circulation on the tube. The wake is
modeled as a discretized vortex sheet. The convection of the shed
vorticity is assessed in an idealized velocity field based only on the
enforcement of the continuity equation along the gap between tubes.
The resulting one dimensional relationship for the temporal variation in
lift force on the tube is an integro-differential equation which cannot be
solved analytically (Price et al., 1992), but a first order model of the
memory function is quantified by numerical quadrature. The non-di-
mensional values obtained in that study and used here are =α 1.01 and

=β 0.15721 . In principle, this approach can be applied to any tube array
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