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A B S T R A C T

In many engineering systems such as nuclear fuel rods and heat exchangers tubes, mechanical components are
subjected to a large number of frictional-contact constraints. An efficient and robust numerical scheme is needed
for handling such a number of constraints. In this paper a numerical method is developed and presented to
handle a large number of rod-to-rod and rod-to-rigid frictional contact constraints. New auxiliary incremental
displacement variables are defined and the non-linear frictional-contact problem is formulated to be a linear
complementarity problem (LCP). Use of LCP eliminate the need for iteration and satisfies all the frictional
contact constraints in the whole system simultaneously. The mixed three-node beam finite elements are em-
ployed to model the longitudinal and lateral deformation of rods. The equations of motion of the entire dyna-
mical system are discretized in the time-domain by means of the Bozzak-Newmark scheme. Validation cases are
discussed and numerical results were obtained and presented for an array of 37 rods inside a tube.

1. Introduction

Frictional contact constraints are encountered in various fields of
engineering such as a bundle of nuclear fuel rods inside a pressure tube,
an array of hot tubes in a steam generator, a bunch of rollers in a sliding
bearing, etc. Fretting and wear are particular types of surface damage
caused by the mechanical interactions between components.
Consideration and predicting of fretting and wear is of high importance
in the design and maintenance of nuclear reactors. Simulating dynamic
behavior of fuel rods and estimating fretting is a very challenging task
and require an efficient numerical methodology. The focus of this study
is to present a robust and efficient numerical method for handling such
systems with large number of Unilateral Frictional Contact (UFC)
constraints.

Park et al. (2011) studied the vibrational behavior of a fuel rod
supported by elastoplastic supports. They have utilized a bilinear
elastoplastic contact force model to simulate the nonlinear vibrational
behaviour. Hassan and Rogers (2005) investigated vibration of a single
fuel rod subjected to turbulence excitations. They applied several fric-
tional models to understand the effect of tube-support clearance and
preload on the predicted work rate. Work by Hassan and Rogers (2005),
later on was improved by Mohany and Hassan (2013) to consider 3
locations of contact between the fuel rod and the pressure tube and to
account for the effect of contact from neighbouring fuel rods. They
applied turbulence and seismic excitation and found the values of work

rate. Wear damage is quantified in terms of the removed volume of
material. According to Archard’s wear model (Suh, 1989), the rate of
volume removal at a location of contact between two components is
related to the sliding velocity and normal force. With the model pre-
sented in this paper, sliding displacement, velocities and the normal
forces can be calculated at several contact locations simultaneously.
Then the results may be used to estimate fretting and wear.

Due to compactness, the total number of potential frictional contact
constraints can be very large. Solving such multibody contact problem
is a very challenging task. Iterative-based methods and the penalty
method are commonly used in solving frictional contact problems
among beams. Xuewen et al. (2000) presented a non-smooth model for
formulating frictional contact problem. Zavarise and Wriggers (2000)
formulated a 3D finite element model to deal with contact and friction
between straight beams by employing the penalty method. Neto et al.
(2014) presented a new methodology to simulate the contact between a
circular rod and a flat surface with the consideration of the rigid body
rotation. They modified the classical tangential gap function in order to
account for the rolling motion and the moment caused by the friction
force.

More recently Litewka (2015) presented a 3D contact finite element
formulation to model beam-to-beam contact with friction. He used the
penalty method to enforce the contact and frictional constraints, and
introduced two additional sets of contact points in situations where
contact cannot be considered as point-wise or node-to-node contact. In
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the case of beam-to-rigid body contact problems several researchers
used iterative methods in connection with the finite element analysis to
solve the problem numerically. It is also reported that Mortar method
with the penalty enforcement of contact constraints and the Mortar
method with the Lagrange multiplier approach are also effective in
handling the beam-to-beam and beam-to-rigid body contact problems
Konyukhov and Schweizerhof (2015). According to Xuewen et al.
(2000), in the penalty methods, ill-conditions occur frequently espe-
cially when the penalty factors are large. Finding the acceptable penalty
parameters that give an accurate assessment of contact forces and at the
same time makes the numerical model less prone to ill-posedness is a
very challenging task. Mechanical systems are often subjected to large
number of frictional-contact constraints and formulating a problem
with large number of DOFs and contact constraints using the discussed
methods is not efficient if not possible sometimes.

Another method for handling contact and friction that have received
a wide attention is the linear complementarity problem (LCP) for-
mulation. Yu and Hojatie (2013) presented an effective scheme based
on LCP formulation for handling frictionless contact among an array of
parallel rods for a static problem. Another challenge in dealing with a
frictional contact problem is that the direction of contact and direction
of the contact induced frictional force are not known a priori. In this
paper, the direction of contact is defined in the direction of the closest
distance between the two contacting points. For the direction of fric-
tional force the procedure proposed by Fadaee and Yu (2015) is im-
plemented.

In this study a numerical method based on Newmark and LCP for-
mulation is presented to handle rod-to-rod and rod-to-rigid body con-
tact. An implicit incremental displacement Bozzak-Newmark scheme is
employed to seek a numerical solution in the time domain for the rods
subjected to friction and unilateral contact constraints. The finite ele-
ment model presented by Yu and Fadaee (2012) is employed to capture
bending, axial, and torsional displacement of an individual rod using
the classical theory of bending and longitudinal deformations.

In handling the multiple unilateral frictional constraints at a time
step, the sub-structuring method is used to eliminate all interior DOF's
(Yu and Hojatie, 2013). The coupled gap equations in the directions of
all potential contact points and the corresponding frictional forces in
the two tangential directions (axial and circumferential) are reduced
through a coordinate transformation and an auxiliary incremental dis-
placement variable, to a LCP for which a solution can be obtained using
the Lemke algorithm. At each time step, the incremental displacement
vectors are resolved into the tangential and normal directions of mo-
tion. Based on Coulomb’s law of friction, the frictional force acts in the
direction opposite to the true direction of motion or tendency of mo-
tion. The main advantage of the LCP is that at every time step, the
solution satisfies all the contact and frictional constraints simulta-
neously without iterations. At the end, the presented numerical method
is employed to obtain the free fall response of an array of 37 rods inside
a tube with rigid boundaries. The mechanical system has 156 sets of
potential rod-to-rod and 54 sets of rod-to-rigid contact constraints.

2. Dynamic equations of rods

An array of rods placed in a cylindrical tube is displayed in Fig. 1.
Rods are modelled as deformable bodies and wall of the tube is con-
sidered rigid. Rods are closely packed and may potentially contact
neighbouring rods or the wall of the tube through small pads that are
attached to them at different axial locations (see Figs. 2 and 3). In a
CANDU nuclear fuel bundle these pads are designed to 1) prevent direct
contact between neighbouring rods and between rods and the tube, 2)
promote heat transfer, 3) avoid creation of localized hot spot. From now
on in this study, contacts between rods will be referred as internal
contact and contact between rods and the tube will be referred as ex-
ternal contact. For simplicity, in this paper we have assumed that all
internal contacts are frictionless while all external contacts have

friction. Contact/impact, stick and slip motion may occur at different
contact locations when rods are interacting with each other and the
tube.

Using finite element method equation of motion for an array of rods
may be written as
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where [m], [k] and [c] are the mass, stiffness and damping matrices
respectively; {Q} is the external force vector; {Qc} is the contact force
vector; {Qf} is the friction force vector. Mass, stiffness and damping
matrices are found by employing the finite element model presented by
Yu and Fadaee (2012).

To find the numerical solution to the Eq. (1) the time domain is
discretized into l equal steps with a time step of Δt as ti= t0+ iΔt, i=0,
1, 2, …, l. If the solution of the dynamical system is known for the time
t= ti the state of the system at t= ti+1 may be found by solving the
following equation
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where α is the relaxation factor. Using Newmark integration
scheme, displacement, velocity and acceleration can be related as

= − − − −+ +q
β t

q q t q β t q{ ¨} 1
Δ

({ } { } Δ { }̇ (0.5 )Δ { ¨} )i i i i i1 2 1
2

(3)

= + − ++ +q q γ t q γ t q{ }̇ { }̇ (1 )Δ { ¨} Δ { ¨}i i i i1 1 (4)

where γ and β are the Newmark coefficients, which can be chosen in the
following range for numerical stability (Rao, 2010)
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In this study, the following values are used: α=0.1, β=0.5 and
γ=0.6. Substitute Eqs. (3) and (4) into Eq. (2) one may arrive at
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where {Δq}i+1 is the incremental displacement and it may be defined as
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All the nodes in the mechanical system may be divided into two sub-
sets: interior and interfacial nodes. Interior node’s displacements are
not involved explicitly in the contact formulations. Therefore the gen-
eralized force due to contact associated with interior DOF’s are zero. On
the other hand interfacial nodes are the nodes that potentially may be
in contact, either internally with another node or externally with the

Fig. 1. An array of rods inside a tube.
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