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A B S T R A C T

A conceptual design of a practical large-scale plant of the thermochemical water splitting the iodine–sulfur (IS)
process flowsheet was carried out as a heat application of Japan Atomic Energy Agency’s commercial Gas
Turbine High Temperature Reactor 300MW for Cogeneration (GTHTR300C) plant design. Innovative techniques
proposed by JAEA were applied for improvement of hydrogen production thermal efficiency; depressurized flash
concentration of H2SO4 using waste heat from Bunsen reaction, prevention of H2SO4 vaporization from a H2SO4

distillation column by introduction of H2SO4 solution from the 2nd flash bottom, and I2 condensation heat
recovery by direct contact heat exchange in an HI distillation column. A simulation of material and heat balance
was made using PRO/II, a commercial chemical process simulator. The result demonstrated that hydrogen of
about 31,900 Nm3/h would be produced by 170MW heat from the GTHTR300C. A process thermal efficiency of
50.2% would be achievable with incorporation of the innovative techniques and the following high performance
components expected in future R&D; an electro-electrodialysis cell stack, a reverse osmosis membrane, a HI
decomposition reactor incorporated with a H2 permselective membrane, and heat exchangers.

1. Introduction

High Temperature Gas-cooled Reactors (HTGR) are expected for
many applications taking advantage of their high temperature helium
coolant of maximum 950 °C. Electricity generation, hydrogen produc-
tion, process steam supply, and waste heat utilization are anticipated
utilizing heat of various temperature ranges. Fig. 1 illustrates examples
of heat applications. Japan Atomic Energy Agency (JAEA) has carried
out R&D on such heat applications as electricity generation (Sato et al.,
2014), hydrogen ironmaking (Kasahara et al., 2014), desalination
(Kamiji et al., 2014), and district heating (Kasahara et al., 2016).

Hydrogen production is one of the most intensively studied appli-
cations in JAEA. The iodine–sulfur (IS) process is selected as the can-
didate hydrogen production method considering its potential to pro-
duce hydrogen with high thermal efficiency from water, which does not
emit CO2 from neither material source nor heat source. The IS process
consists of the following three chemical reactions. H2O is decomposed
thermally into H2 and O2 in total; iodine (I) and sulfur (S) compounds
cycle within the process.

+ + → +I SO 2H O H SO 2HI (Bunsen reaction)2 2 2 2 4

→ + +H SO H O SO 0.5O2 4 2 2 2

→ +2HI H I2 2

The highest temperature requirement in the process is 800–900 °C
for H2SO4 decomposition. The demand matches the maximum tem-
perature of the HGTR helium coolant of 950 °C. At present, a test fa-
cility made of industrial materials has been constructed, which is de-
signed as 100 NL/h scale hydrogen production. An 8-h continuous
operation tests are successfully demonstrated in February 2016
(Noguchi et al., 2016; Tanaka et al., 2016). Preparation of a longer-term
test is now under way. After the success of the test, demonstrations of
heat supply from the High Temperature Test Reactor (HTTR), a test
reactor of HTGR in JAEA, to a helium gas turbine (GT) and the IS
process is planned. Designing of a HTTR-GT/H2 plant for the plan is in
progress (Yan et al., 2016). Technology obtained in the test will be
transferred to private companies for commercialization.

A flowsheet analysis of the IS process using heat from a HTGR was
performed. For the H2SO4 section, 3 stages flash drums and a direct
contact heat exchanger (DCHX) H2SO4 concentrator were used. Electro-
electrodialysis (EED) cell stacks and reverse osmosis (RO) membranes
were applied for HI concentration. Removal of I2 from HI decomposi-
tion field by reaction with Co was then utilized to enhance HI con-
version ratio. Total heat input was standardized to 170.0MWt, the heat
supply from Gas Turbine High Temperature Reactor 300MW for
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Nomenclature

nH2 hydrogen production rate, mol/s
Q total heat input to the IS process, MW
t+ H+ transport number, molar ratio of H+ permeation rate

through a cation exchange membrane in the cell to elec-
tron reacted at electrodes, dimensionless

W total electricity input to the IS process, MW
β electroosmosis coefficient, molar ratio of H2O permeation

rate to H+ permeation rate, dimensionless
ΔHH2 higher heating value of H2, (=0.2858MJ/mol)
η hydrogen production thermal efficiency, %
ηel. net electricity generation efficiency, %

Subscript

e electricity
t heat

Fig. 1. HTGR heat applications.
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Fig. 2. Bunsen section flowsheet. The component with underline is a newly added one in this study. Numbers with parentheses mean stream connection to Figs. 3 and 4.
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