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Dispersive kinetic models for isothermal solid-state conversions
and their application to the thermal decomposition of oxacillin
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Abstract

The authors recently published works in which the use of two novel equations for modeling the dispersive kinetics observed in various solid-state
conversions are described. These equations are based on the assumptions of a ‘Maxwell–Boltzmann (M–B)-like’ distribution of activation energies
and a first-order rate law. In the present work, it is shown that it may be possible to expand the approach to include mechanisms other than
first-order, i.e. some of those commonly encountered in the field of thermal analysis, thus obtaining ‘dispersive versions’ of these kinetic models.
The application of these dispersive kinetic models to the slightly sigmoidal, isothermal conversion–time (x–t) data of Rodante and co-workers
for the degradation of the antibiotic, oxacillin, is described. This is done in an effort to test the limitations of the proposed dispersive models in
describing kinetic data which is not clearly sigmoidal (i.e. as shown in previous works). Finally, it is demonstrated that, using graphical analysis,
the typically sigmoidal x–t plots of first-order dispersive processes are the direct result of (asymmetric) activation energy distributions that are
either ‘∩-shaped’ (for heterogeneous conversions) or ‘∪-shaped’ (for homogeneous conversions) in appearance, i.e. when the activation energy is
plotted as a function of conversion. This finding lends support to the founding hypothesis of the authors’ approach for modeling dispersive kinetic
processes: the existence of ‘M–B-like’ distributions of activation energies.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

While several common kinetic models exist in the litera-
ture for solid-state applications [1–4], their general application
is often limited only to certain, simple phase transformations.
These models are summarized in the first few columns of
Table 1. For more complex transformations, generally those
which exhibit multiple activation energies over the course of
the conversion (as observed using ‘model-free’ isoconversional
kinetic techniques [5–7]), these kinetic models, used either indi-
vidually or in combination, often fail to adequately describe the
data; a specific example will be discussed later in this work.
Additionally, the traditional kinetic models are often plagued by
factors including poor fits to experimental data, the inability to
accurately estimate the start time of conversion, the empirical
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nature of the (sometimes many) fit parameters, etc. Alterna-
tively, the authors have recently discussed the development
of two novel, simple, ‘dispersive kinetic models’ which were
shown to fit/describe well the experimental data for various
solid-state conversions, including a solvent-mediated polymor-
phic transformation and a thermal decomposition, using only
two fit parameters (each of which has physical units) [8].

Dispersive kinetics are observed in chemical systems exhibit-
ing ‘renewing environments’, i.e. typically those in which
molecular dynamics impact the measured rate of conversion
[10–12]. The authors believe that many solid-state conversions
may fall into this category (e.g. nucleation/de-nucleation and
nucleation-and-growth, rate-limited processes, in which kinetic
energy quantization may be important in affecting the conver-
sion rate e.g. [9]). Dispersive kinetics are often explained by
the existence of a distribution of activation energies. This distri-
bution of activation energies, in turn, relates a time-dependent
rate constant for the conversion, which can impact the observed
kinetic behavior [8–12].
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The authors assume that the distributions of activation ener-
gies for various dispersive processes take the general functional
form/shape of the Maxwell–Boltzmann (M–B) kinetic energy
distribution due to the role of molecular dynamics in affecting the
observed reaction kinetics; the distribution is ‘concave-down’
for heterogeneous systems (i.e. those producing acceleratory,
sigmoid conversion versus time, x–t, curves—which are charac-
terized by slower rates earlier in the conversion than towards the
end) and ‘concave-up’ (i.e. inverted) for homogeneous systems
(i.e. those producing deceleratory, sigmoid x–t curves—which
are characterized by faster rates earlier in the conversion, post-
induction period, than towards the end) [8,9]. [An example of
a dispersive homogeneous solid-state conversion is the thermal
decomposition of silver permanganate e.g. [8]; it is a process
which yields products from a single, homogeneous reagent.
Heterogeneous solid-state conversions, on the other hand, typi-
cally involve polymorphic transformations and crystallizations,
i.e. systems which involve the formation a ‘product’ con-
densed phase from a homogeneous/dissolved ‘reagent’ phase.]
In either case, these activation energy distributions ultimately
define (mathematically) a time-dependent rate constant, which
the authors believe can be approximated by a specific func-
tional form, as will be discussed later. When the time-dependent
rate constant is coupled with an assumed first-order mechanism
for the conversion, the dispersive kinetic model equations of
the authors’ previous works are obtained (i.e. one for treat-
ing homogeneous conversions and one for use in heterogeneous
applications [8,9]).

In this work, it is demonstrated that it may be possible to con-
vert some of the traditional kinetic models shown in Table 1 into
corresponding ‘dispersive kinetic models’, using the approach
described above. Additionally, the application of these various
dispersive models to the isothermal decomposition of the antibi-
otic, oxacillin, originally investigated by Rodante et al. [14–16],
is shown. This particular conversion is of interest to the authors
for three main reasons: (1) the data is ‘complex’ and it cannot be
satisfactorily fit/interpreted using most of the traditional kinetic
models, even in combination, (2) the x–t data is ‘less sigmoidal’
in appearance than any other data the authors have attempted to
model with their dispersive kinetic equations previously (thus,
it may provide a good test of the potential limitations of the
proposed dispersive kinetic models) and (3) the solid-state ther-
mal decomposition of oxacillin, unlike other compounds the
authors have previously investigated [8,9], appears to proceed
via a heterogeneous mechanism rather than a homogeneous one
(from visually examining the shape of the x–t trends). Finally,
by utilizing some recent results [9], the authors attempt to show,
via graphical analysis, that the dispersive model equation for
first-order heterogeneous processes (i.e. the model which is ulti-
mately used to treat the oxacillin data) predicts a ‘M–B-like’
(i.e. asymmetric, ‘∩-shaped’) distribution of activation energies,
as a function of the extent of conversion. This is an impor-
tant goal because such a finding would lend support to the
fundamental assumption (i.e. in the derivation of the various dis-
persive kinetic model equations presented in this work) of the
existence of such activation energy distributions in dispersive
conversions.
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