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h i g h l i g h t s

� Elaborated Eulerian two-fluid methods may predict multiphase flow with large differences in interfacial length scales.
� A study on the grid requirements of resolved structures in such two-fluid methods is presented.
� The two-fluid results are only little dependent on the grid size.
� The results justify the resolved treatment of flow structures covering only few grid cells.
� A grid-dependent limit between resolved an modeled structures may be established.
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a b s t r a c t

The influence of the grid size on the rise velocity of a single bubble simulated with an Eulerian two-fluid
method is investigated. This study is part of the development of an elaborated Eulerian two-fluid frame-
work, which is able to predict complex flow phenomena as arising in nuclear reactor safety research
issues. Such flow phenomena cover a wide range of interfacial length scales. An important aspect of
the simulation method is the distinction into small flow structures, which are modeled, and large struc-
tures, which are resolved. To investigate the requirements on the numerical grid for the simulation of
such resolved structures the velocity of rising gas bubbles is a good example since theoretical values
are available. It is well known that the rise velocity of resolved bubbles is clearly underestimated in a
one-fluid approach if they span over only few numerical cells. In the present paper it is shown that in
the case of the two-fluid model the bubble rise velocity depends only slightly on the grid size. This is
explained with the use of models for the gas–liquid interfacial forces. Good approximations of the rise
velocity and the bubble shape are obtained with only few grid points per bubble diameter. This result
justifies the resolved treatment of flow structures, which cover only few grid cells. Thus, a limit for the
distinction into resolved and modeled structures in the two-fluid context may be established.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

One important aspect of nuclear reactor safety (NRS) research is
the development of reliable simulation tools, which include the
prediction of multi-phase flow phenomena such as steam injection
into pools or steam bubble entrainment into sub-cooled liquids by
impinging jets, e.g. in case of emergency core cooling injection into
a partially uncovered cold leg (Lucas et al., 2011).

These multiphase flow phenomena cover different flow pat-
terns, ranging from small structures, like small air bubbles in

water, to large structures, like free surfaces. In many realistic sce-
narios, small and large interfacial structures exist simultaneously.
In the simulation context, the distinction into large and small
structures depends on the grid size. Large structures cover several
grid cells, whereas small structures are in the range of grid size.
Thus, the simulation of flows with both large and small interfaces
requires extended models, which distinguish between the scales
and take into account the different flow patterns.

Typically, for the simulation of flow structures with large inter-
faces, one-fluid simulation models like Volume of Fluid (VoF)
methods, introduced by Hirt and Nichols (1981) or Level Set (LS)
methods (Sussmann et al., 1994) are used. One-fluid methods, also
classified as one-field or single-field methods, calculate one veloc-
ity field together with a transport equation for a coloring function
which characterizes the interface. These methods need a high
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number of grid points to resolve the interfacial structures. This lim-
its the applicability of one-fluid methods to the simulation of
large-scaled structures, as a resolution of small interfaces is not
suitable.

Otherwise, Eulerian two-fluid methods compute for each phase
an own velocity field. The considered variables are ensemble aver-
aged values. Both phases are present simultaneously in every grid
cell with certain probabilities given by the phasic volume fractions.
Due to the averaging of the variables small-scaled interfaces are
not simulated in the two-fluid method. Interactions between the
phases, which depend on these interfaces, like momentum trans-
fer, have to be considered by closure models. As the small struc-
tures are not resolved, two-fluid models are suitable for the
simulation of dispersed flows.

In the two-fluid context, large interfacial structures are not
sharply defined as in the one-fluid approach, but smeared due to
the averaging of the variables. Here, large interfaces may be char-
acterized by sharp gradients of the volume fractions (Hänsch et al.,
2012). In order to counteract a numerical smearing of the gradients
during the solution of the volume fraction transport equation, cer-
tain techniques have to be applied to keep the gradients and hence
the interfaces sharp. Zwart et al. (2003) propose a compressive
interpolation technique in the volume fraction continuity equation,
whereas Hänsch et al. (2012) introduce a clustering force; Strubelj
et al., (2009) solve an additional equation, which acts as an artifi-
cial compression, right after the solution of the continuity
equation.

Thus, extended Eulerian two-fluid methods with interface
sharpening methods are capable of simulating complex multiphase
flow phenomena with co-existing large-scaled and dispersed
small-scaled structures. One recently developed approach is the
GENTOP (GENeralized TwO-Phase) concept (Hänsch et al., 2012).
It takes into account at minimum three phases: a poly-dispersed
gas phase for the small-scaled bubbles, a continuous gas phase
for the large-scaled structures, and a continuous liquid phase.
The poly-dispersed gas phase is modeled based on the inhomoge-
neous Multiple Size Group (iMUSIG) approach (Krepper et al.,
2008). Large-scaled interfaces between the continuous gas and
continuous liquid phase are detected by a surface function, which
is based on the comparison of the gradient of the continuous gas
volume fraction with a certain grid size dependent critical value.
For the interface sharpening, a clustering force is introduced as
an additional source term in the momentum equation. Transitions
between dispersed bubbles and large gas structures can be mod-
eled by coalescence and breakup processes basing on the included
population balance.

In the GENTOP concept, the distinction between small (mod-
eled) and large (resolved) gas structures is based on the grid size,
where structures with a length scale (e.g. bubble diameter) larger
than 4 typical mesh cell sizes Dx are statistically resolved, i.e.
resolved in the two-fluid context, where the volume fractions give
only probabilities for the presence of the according phase. It is
mentioned in Hänsch et al. (2012), that this value of 4Dx ‘has to
be checked carefully’.

One crucial point in the GENTOP concept is the prediction of the
correct flow behavior of the resolved structures, especially for the
structures near the threshold value mentioned above. The correct
flow behavior may be the correct rise velocity and bubble shape
in the simulation of a large resolved rising bubble, for example.
This leads to the question of a sufficient grid resolution for the
large structures.

It is known from literature, that for one-fluid methods, a certain
number of grid points is needed to resolve the interfacial details in
order to obtain reasonable results as the interfacial forces are
directly calculated. Otherwise, in the two-fluid simulations, the
interfacial forces are reflected by models. These models, e.g. for

the drag force, determine the relative velocity between the two
phases. This leads to the assumption, that the two-fluid simulation
results are only little dependent on a numerical parameter like the
grid size and that only few grid points are needed for the bubble
resolution.

The present paper investigates this question of sufficient grid
resolution for the case of a single rising bubble in stagnant fluid.
This flow phenomenon is well studied in order to understand the
characteristics of bubbles. Some fundamental work can be found
e.g. in Clift et al. (1978), Fan and Tsuchiya (1990) and Bhaga and
Weber (1981).

Most of the literature investigating the grid resolution for the
simulation of a single rising bubble deals with one-fluid methods.
Andersson et al. (2012) point out, that for VoF methods ‘typically,
about 20 cells/diameter will be needed in order to obtain satisfac-
tory resolution of a spherical bubble or drop’. In Svihla and Xu
(2006), a 2D bubble with 2 mm diameter was resolved with about
20 cells/diameter. It is mentioned, that ‘the calculation is some-
what imprecise since the grid resolution for the bubble is fairly
coarse’. In Badreddine et al. (2015) a grid study is performed for
the rise of 1 mm and 2 mm air bubbles in stagnant water, showing
that a number of at least 20 grid cells per bubble diameter is
needed to obtain agreement with experimental data concerning
bubble shape and terminal rise velocity. In Engberg et al. (2014),
a much higher number of 80 cells is mentioned to resolve a 3D
toluene bubble with 5 mm diameter in a Level Set simulation,
and even about 300 cells, if Marangoni convection is taken into
account. Amaya-Bower and Lee (2010) show, that a bubble resolu-
tion with 40 grid cells per diameter gives reasonable accuracy in
the 2D simulation of bubbles for with a Lattice Boltzmann Method
based on the Cahn–Hilliard diffusive interface approach.

On the other hand, there are only few statements concerning
the grid requirements for the bubble simulation with an Eulerian
two-fluid method. Strubelj et al. (2009) show results for a two-
fluid simulation of a 2D bubble at low Reynolds numbers using
non-realistic fluid properties. The bubble is resolved with high
numbers of 40, 80 and 160 cells/diameter. Here, the comparison
of the bubble rise velocity and the bubble circularity shows practi-
cally no grid dependency, which indicates, that a smaller number
of grid points could be sufficient.

This paper provides grid studies for calculations with the Eule-
rian two-fluid method performed on successively refined grids.
Three different bubble sizes are considered. The results are evalu-
ated based on the terminal bubble rise velocity and the bubble
shape. The aim is to show that the two-fluid method is only slightly
grid dependent and that good approximationsmaybeobtainedwith
only fewgrid points for the bubble resolution. Based on the results, a
grid-size dependent limit between the small modeled and large
resolved structures in the GENTOP concept may be established.

2. Physical and numerical basics

The governing equations for the description of the flow of New-
tonian fluids are the Navier–Stokes equations, describing the con-
servation of mass and momentum.

In the Eulerian two-fluid approach each of the phases has its
own velocity field. Thus, two sets of equations are solved for the
phases j = 1, 2:
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