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h  i  g  h  l  i g  h  t  s

• Large  eddy  simulation  of  the  cross-flow  in  a staggered  tube  bundle  array  in  3D was  made.
• LBM  and  FVM  are  used  separately  as  numerical  solvers  and  the  results  of  each  method  compared  with  experimental  data.
• Effect  of lattice  model  is  studied  for  tube  bundle  flow.
• Filter  size  effects,  mesh  size  effects  are  studied  for  VLES  turbulence  model.
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a  b  s  t  r  a  c  t

The  decision  on the  magnitude  of  the  grid  size  is  a crucial  problem  in  large  eddy  simulations.  Finer  mesh
requires  excessive  memory  and causes  long  simulation  time.  Large  eddy  simulation  model  becomes
inefficient  when  the extent  of  the  flow  geometry  to  be  simulated  with  the lattice-Boltzmann  method  is
large.  Thus,  in  this  study,  it is  proposed  to  investigate  the  capabilities  of  three  turbulence  models,  namely,
very  large  eddy  simulation,  Van  Driest  and  Smagorinsky–Lilly.  As  a test  case,  a  staggered  tube bundle  flow
experiment  is  used  for  the  validation  and  comparison  purposes.  Sensitivity  analyses  (including  mesh  and
filter size)  have  been  made.  Furthermore,  the  effect  of  lattice  model  is  investigated  and  it is  showed
that  the  D3Q27  and  D3Q19  models  do  not  differ  significantly  in  lattice-Boltzmann  method  for  this  type
of  flow.  The  results  of turbulence  model  comparisons  for staggered  tube  bundle  flow  showed  that  very
large  eddy  simulation  is  superior  at low  resolution.  This  paper  might  be  considered  as  a good  validation  of
the lattice-Boltzmann  method.  In  turbulent  flow  conditions,  the  code  successfully  captures  the  velocity
and  stress  profiles  even  if  the flow  is  quite  complicated.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The development of computer technology and the improvement
of numerical methods encourage the simulation of turbulent flows.
The modelling of turbulent flow is different from and more sophis-
ticated than laminar flow. Therefore, many turbulence models have
been developed and investigated so far. Direct numerical simula-
tion (DNS) is still very expensive even if powerful processors are
developed. In DNS, all turbulent scales must be resolved from small-
est Kolmogorov scale to the integral length scale. This necessitates a
high lattice resolution for turbulent flow simulations. Thus, instead
of DNS, large eddy simulation (LES) is generally preferred for turbu-
lence problems. In LES, large eddies interact with and extract energy
from the mean flow. These eddies are simulated directly, and the
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smaller ones (the size smaller than the grid size) are modelled with
an appropriate assumption.

The decision on the magnitude of the grid size is a crucial prob-
lem in LES. The finer mesh requires extensive memory and causes
long simulation time. The coarser mesh may  give incorrect results.
Thus, the LES model may  be inappropriate when the size of the
flow geometry is large. Recently, very large eddy simulation (VLES)
turbulence model has been introduced to reduce the computa-
tional cost of LES. The main idea in this approach is to combine the
unique advantages of Reynolds averaged Navier–Stokes equations
(RANS) and LES. In this model, larger parts of turbulent fluctuations
are filtered. A more comprehensive sub-filter model is needed to
eliminate the accuracy lost in filtering concept. The standard k − ε
model is used in sub-grid scale modelling. This allows the usage
(with an acceptable accuracy and robustness) a coarser grid than
LES.

The main scope in this study is to investigate the capability of
VLES for simulating the turbulent flow even if the resolution is low.

http://dx.doi.org/10.1016/j.nucengdes.2016.01.020
0029-5493/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.nucengdes.2016.01.020
http://www.sciencedirect.com/science/journal/00295493
http://www.elsevier.com/locate/nucengdes
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nucengdes.2016.01.020&domain=pdf
mailto:ckocar@hacettepe.edu.tr
dx.doi.org/10.1016/j.nucengdes.2016.01.020
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The simulation time and accuracy reached are compared. To do
this, three different turbulence models Smagorinsky–Lilly (LES),
Van-Driest (LES) and VLES are used to simulate the flow in stag-
gered tube bundle array. VLES and Van-Driest turbulence models
are implemented to the lattice-Boltzmann framework. The results
obtained from each method are compared with the experimental
data.

The experiments performed by Simonin and Barcouda (1986,
1988) are one of the turbulence challenge problem for heat
exchanger design which is an attractive test example offered
by ERCOFTAC-IAHR (1983, 1994). The case is a two-dimensional
isothermal flow across a staggered tube bundle array. Velocity
and Reynolds stress profiles along specified lines are measured.
Many researchers studied on this problem using different turbu-
lence models and different geometrical modelling of the system.
Watterson et al. (1999) used pressure-based finite volume algo-
rithm for solving Reynolds averaged Navier–Stokes equations and
their computational domain consists of all seven rows of tubes
with one pitch length width in transverse direction. Rollet-Miet
et al. (1999) used LES finite element code and presented constant
and dynamic Smagorinsky sub-grid model results for fully periodic
3D geometry. Benhamadouche and Laurence (2003) used LES and
transient Reynolds stress transport model (RSTM) in 2D and 3D
for periodic computational domain. They compared their results
with DNS and experimental results. Hassan and Barsamian (2004)
simulated a part of full bundle geometry in LES using curvilin-
ear coordinates. Labois and Lakehal (2011) used a new turbulence
sub-grid scale model as VLES and compared their results with LES
for fully periodic unit cell of staggered tube bundle problem. By
considering all discussions and conclusions made by the authors,
the resulting consensus is that the calculated Reynolds stresses do
not match the experimental data.

In recent years, the lattice-Boltzmann method (LBM) rapidly
increases its popularity as an alternative method to the tradi-
tional Computational Fluid Dynamics (CFD) methods. LBM does not
solve Navier–Stokes equations; instead discrete Boltzmann equa-
tion is solved explicitly to simulate the fluid flow with collision
model Bhatnagar–Gross–Krook (BGK) introduced by Bhatnagar
et al. (1954). Collision and streaming processes of fluid particles
evaluate the macroscopic behaviour of the system such as den-
sity and velocity. The detailed information about the formulation
of LBM is given in the next section.

The remaining part of this paper is organized as follows:
In Section 2, the general information about lattice-Boltzmann
method with D3Q19 and D3Q27 lattice models is given. Also,
the numerical methods adopted in this study are described. LES
(Smagorinsky–Lilly and Van-Driest) and VLES sub-grid-scale tur-
bulence models are mentioned for lattice-Boltzmann numerical
solvers. In Section 4 and 5, LES (with ANSYS Fluent 13.0 (ANSYS,
2010) and LBM) and VLES computations of flow in a staggered tube
bundle array are presented and compared with the experimental
data. The results are analyzed, and the important findings obtained
from this study are discussed. Finally, in Section 6, the summary
and conclusions of this study are presented.

2. Lattice-Boltzmann method with turbulence

The LBM is a new and an alternative approach for simulating
fluid flows. In LBM, the continuous fluid flow is decomposed into
pockets of fluid particles. The fluid particles may  stay at rest or
move to one of neighbouring nodes. D3Q19 model is most widely
used lattice model for 3D simulations of laminar flow problems.
However, turbulence simulations with D3Q19 model could not give
reasonable results to the DNS data (Eggels et al., 1994). In Kang
and Hassan’s (2013) turbulent circular pipe flow simulations, they

showed that the D3Q27 lattice model could achieve the rotational
invariance for long time averaged turbulence statistics and gener-
ates the results comparable to DNS data, while the D3Q19 lattice
model breaks the rotational invariance and produces unreasonable
data. Thus, in this study, the effect of lattice model on the simula-
tion results is investigated. To do this, fully periodic flow geometry
with resolution D/50 is selected for comparison.

In D3Q27 model (see Fig. 1), the discrete lattice-Boltzmann
equation is in the form of,

fi (x + ei�t,  t + �t) − fi (x, t) = ˝ (fi) (1)

where fi (x, t) is the distribution function for particles with velocity
ei at position x and time t, �t  is the lattice time interval and ˝ (fi)
is the collision operator which is defined as,

˝ (fi) = −1
�

(
fi (x, t) − f eq

i (x, t)
)

(2)

where � is the relaxation time.
The equilibrium function f eq

i (x, t) is written as,

f eq
i (x, t) = wi� (x)

(
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2c2 (ei · u)2 − 3
2c2
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)
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where the weights are

wi =

⎧⎪⎪⎨
⎪⎪⎩

8/27 i = 0

2/27 i = 1, . . .,  6

1/216 i = 7, . . .,  14

1/54 i = 15,  . . .,  26

here � (x) is the space dependent fluid density and the lattice speed
is c = �x/�t, where �x is the grid size and �t  is the time step size
respectively.

In D3Q27 model, lattice vectors are specified as;

ei =

⎧⎪⎪⎨
⎪⎪⎩

(0,  0, 0) i  = 0

(±1, 0, 0),  (0,  ±1, 0),  (0,  0, ±1) i = 1, . . .,  6

(±1, ±1, 0),  (±1, 0, ±1), (0, ±1, ±1) i = 7, . . .,  18

(±1, ±1, ±1) i = 9, . . .,  26

Fig. 1. D3Q27 x, y and z velocity components.
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