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h  i  g  h  l  i g  h  t  s

• We  present  a hydrogen-concentration  prediction  method  in  an  NPP  containment.
• The  cascaded  fuzzy  neural  network  (CFNN)  is used  in  this  prediction  model.
• The  CFNN  model  is  much  better  than  the  existing  FNN  model.
• This  prediction  can  help  prevent  severe  accidents  in  NPP  due  to hydrogen  explosion.
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a  b  s  t  r  a  c  t

Recently,  severe  accidents  in  nuclear  power  plants  (NPPs)  have  attracted  worldwide  interest  since  the
Fukushima  accident.  If  the hydrogen  concentration  in an  NPP  containment  is increased  above  4%  in
atmospheric  pressure,  hydrogen  combustion  will likely occur.  Therefore,  the  hydrogen  concentration
must  be kept  below  4%.  This  study  presents  the  prediction  of  hydrogen  concentration  using  cascaded  fuzzy
neural  network  (CFNN).  The  CFNN  model  repeatedly  applies  FNN  modules  that  are  serially  connected.
The  CFNN  model  was  developed  using  data  on  severe  accidents  in  NPPs.  The  data  were  obtained  by
numerically  simulating  the  accident  scenarios  using  the  MAAP4  code  for optimized  power  reactor  1000
(OPR1000)  because  real  severe  accident  data  cannot  be  obtained  from  actual  NPP  accidents.  The  root-
mean-square  error level predicted  by the  CFNN  model  is  below  approximately  5%.  It  was confirmed  that
the  CFNN  model  could  accurately  predict  the hydrogen  concentration  in  the containment.  If  NPP  operators
can predict  the hydrogen  concentration  in the  containment  using  the CFNN  model,  this  prediction  can
assist  them  in  preventing  a hydrogen  explosion.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Ensuring the safety of nuclear power plants (NPPs) has gained
much importance around the world since the Fukushima acci-
dent. High hydrogen concentration in a containment is directly
related to NPP safety. Major hydrogen sources during the devel-
opment of a severe accident in a LWR  are largely classified into:
(a) In-vessel metal oxidation (Zr clads and grids and other metal-
lic structures) or B4C absorber material oxidation with steam, (b)
Ex-vessel oxidation of metallic material during direct containment

Abbreviations: CFNN, cascaded fuzzy neural network; FNN, fuzzy neural net-
work.
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heating (DCH), (c) Ex-vessel oxidation of metallic material dur-
ing molten core concrete interaction (MCCI) (Abou-Rjeily et al.,
2011). Consequently, hydrogen is accumulated in the containment.
If the hydrogen concentration increases above 4% in atmospheric
pressure, hydrogen combustion will likely occur. For example, in
the March 2011 Fukushima Daiichi accident – in which the cores
of three GE-designed boiling water reactors lost all cooling and
melted down – hydrogen leaked from the primary containments
into the reactor buildings. The hydrogen accumulated in the reactor
buildings and detonated, causing large releases of harmful radionu-
clides (Leyse, 2014). Thus, the hydrogen concentration must be kept
below 4% to maintain containment integrity and prevent explosion.
The objective of this study is to predict the hydrogen concentration
in the containment under severe NPP accidents.

Diverse artificial-intelligence techniques have been success-
fully utilized in nuclear engineering area, such as signal validation
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(Hines et al., 1997; Na, 2001; Garvey et al., 2007), plant diagnos-
tics (Bartlett and Uhrig, 1992; Marseguerra and Zio, 1994; No et al.,
2012; Gofuku et al., 1988), event identification (Na et al., 2004;
Cheon and Chang, 1993; Bartal et al., 1995), and smart sensing
(or function approximation) (Park et al., 2014a, 2014b; Na et al.,
2008b). In the present study, the cascaded fuzzy neural network
(CFNN) model is used to predict hydrogen concentration. The CFNN
model presents the prediction value of hydrogen concentration
through a repeatedly performed analysis using serially connected
FNN modules. In effect, CFNN is an extended concept of FNN (Kim
et al., 2015b).

The loss of coolant accident (LOCA) break size can accelerate
propagation speed from LOCA to a severe accident (if safety sys-
tems do not work). Therefore, the LOCA break size is related to
hydrogen generation rate versus time and related to hydrogen con-
centration trend released into containment. Because the proposed
CFNN model predicts the hydrogen concentration in containment
versus time, the LOCA break size is used as an input signal. The
LOCA break size cannot be measured, but it can be predicted using
the trend data for a short time after reactor trip. The LOCA break
size can be accurately predicted using previously developed meth-
ods (Na et al., 2004, 2008a) and can be used as a variable input to
predict the hydrogen concentration in the containment.

The CFNN model is a data-based method that requires data
for its development and verification. Because real severe accident
data cannot be obtained from actual NPP accidents, the data were
obtained by numerically simulating severe accident scenarios of
the optimized power reactor (OPR1000) using MAAP4 code (Henry
et al., 1990).

2. CFNN model

The CFNN model structure contains serially connected FNN
modules. The CFNN model predicts an appropriate value of the vari-
able data through an analysis repeatedly performed by the serially
connected FNN modules. A typical diagram of the CFNN model is
shown in Fig. 1 (Kim et al., 2015b).

2.1. FNN model

The FNN model is a combination of a fuzzy inference system
(FIS) and neuronal training. The conditional rule of FIS is applied
by a fuzzy if–then rule that consists of an antecedent and a conse-
quence (Mamdani and Assilian, 1975). The current study uses the
Takagi–Sugeno-type FIS (Takagi and Sugeno, 1985) because it does
not need a defuzzifier in the output terminal, which is a real value.

If x1(k) is Ai1 AND. . .AND xm(k) is Aim,

then ŷi(k) is f i(x1(k), . . .,  xm(k)) (1)

where xj(k): FIS input value (j = 1, 2, . . .,  m), Aij: fuzzy set for the ith

fuzzy rule and the jth input variable (i = 1, 2, . . .,  n), ŷi(k): ith fuzzy
rule output, m:  number of input variables and n: number of fuzzy
rules.

The number of Nt input and output training data of the fuzzy
model in Eq. (2) are assumed to be available, and each of the data
is assumed to be a normalized value.

zT (k) =
(

xT (k), ŷ(k)
)

(2)

where

xT (k) = (x1(k), x2(k), . . .,  xm(k)) , k = 1, 2, . . .,  Nt.

The membership function of fuzzy sets Aij(k) is denoted as
�ij(xj(k)). In this study, the symmetric Gaussian membership func-
tion in Eq. (3) is used to reduce the number of parameters to be

Fig. 1. CFNN model.

optimized. It has a characteristic symmetric bell curve shape that
tends to zero.

�ij(xj(k)) = e−(xj(k)−cij)
2/2�ij

2
(3)

where cij: center position of the peak and �ij: width of the bell
shape.

The membership function parameters are called antecedent
parameters that should be optimized. The function in Eq. (1),
namely, fi(x(k)), is expressed as a first-order polynomial of the input
variables, i.e., the output of each rule is expressed as follows:

f i(x(k)) =
m∑

j=1

qijxj(k) + qi0 (4)

where qij: weight of the ith fuzzy rule and jth input variable and qi0:
bias of the ith fuzzy rule.

The output ŷ(k) of FIS is calculated by summing the weighted
fuzzy rule outputs ŷi(k) as follows:

ŷ(k) =
n∑

i=1

ŷi(k) =
n∑

i=1

w̄i(k)yi(k) =
n∑

i=1

w̄i(k)f i(x(k)) (5)

where:

w̄i(k) = wi(x(k))∑n
i=1wi(x(k))

(6)
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