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• We  extend  the exact-to-generalized  perturbation  theory  to  neutron  transport  calculations.
• EPGPT  can  upper-bound  the  errors  resulting  its  predictions  with  high  probability.
• We  have  applied  EPGPT  to  lattice  physics  calculations.
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a  b  s  t  r  a  c  t

This  manuscript  extends  the  exact-to-precision  generalized  perturbation  theory  (EPGPT),  introduced  pre-
viously,  to neutron  transport  calculation  whereby  previous  developments  focused  on  neutron  diffusion
calculation  only.  The  EPGPT  collectively  denotes  new  developments  in  generalized  perturbation  theory
(GPT)  that  place  premium  on  computational  efficiency  and  defendable  accuracy  in order  to  render  GPT
a  standard  analysis  tool  in routine  design  and  safety  reactor  calculations.  EPGPT  constructs  a  surrogate
model  with  quantifiable  accuracy  that  can  replace  the  original  neutron  transport  model  for  subsequent
engineering  analysis.  This  is  achieved  by  reducing  the  effective  dimensionality  of the  state  variable  (i.e.
neutron  angular  flux)  via  projection  onto  an  active  subspace  determined  using  reduced  order  modeling
techniques.  Confining  the  state  variations  to the  active  subspace  allows  one  to  recast  the  problem  in  terms
of  a small  number  of  ‘pseudo’  responses  which  are  solely  dependent  on  the physics  model  rather  than
on the  nominal  number  of  responses,  the  input  parameters,  or the  number  of  points  in  the  state  phase
space.  This  renders  a computationally  efficient  construction  of the  surrogate  whose  form  is determined
using  a recursive  relationship  from  the solution  of  the  transport  equation.  Unlike  conventional  surrogate
techniques,  the  EPGPT  can  upper-bound  the errors  resulting  from  its predictions  with  high probability,
which  can  be  preset  by the  user.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In performing reactor analysis and design calculations, pertur-
bation theory can significantly reduce the computational cost by
bypassing the repeated execution of forward calculations, which
is facilitated via adjoint calculations. Because of this property, GPT
has found widespread use in many engineering-oriented applica-
tions such as sensitivity analysis, uncertainty quantification, and
data assimilation, where one is interested in estimating a given
response variation due to many input parameters perturbations
(Baudron et al., 1998; Gandini, 2001; Van Geemert, 2001; Kim
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et al., 2001; Maldonado and Turinsky, 1995; Maldonado et al., 1995;
Moore and Turinsky, 1998). Another example is the use of GPT
for in-core fuel management optimization (Moore and Turinsky,
1998).

Perturbation theory was first introduced into reactor physics by
Wigner (1945) for nonself-adjoint equations, and was  subsequently
further developed and customized, under the name of generalized
perturbation theory (GPT), for reactor analysis and design calcu-
lations (Cacuci et al., 1980; Gandini, 1967; Lewins, 1965; Oblow,
1976; Pomraning, 1965; Stacey, 1974; Usachev, 1964; Williams,
1986). Usachev (1964) developed the GPT, making exclusive use of
importance conservation concepts, for several physical processes
taking place in a reactor working under steady-state conditions
that are linear functionals of neutron flux. Gandini (1967) further
extended the GPT to calculate the bilinear functionals of the real
and adjoint fluxes, e.g. reactivity worth, reaction ratios.
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It is noteworthy to mention that three most prominent GPT for-
malisms have been proposed by different scientists in 1960s and
1970s. The heuristic GPT developed by Usachev (1964) and Gandini
(1967) associates the adjoint flux with concept of importance. Vari-
ational formalism developed by Lewins (1965), Pomraning (1965)
and Stacey (1974) provides a sound theoretical basis for the GPT,
and has found a much wider application in reactor physics approx-
imations (Williams, 1986). The third formalism based on a formal
differentiation of the response considered was proposed by Oblow
(1976) and extensively developed by Cacuci et al. (1980). It is
important to note that all the formalisms lead to identical varia-
tional expressions (Cacuci et al., 1980). In this work, the variational
approach will be employed to develop the EPGPT for neutron trans-
port equation.

Currently, the first-order GPT has found its way into stan-
dardized computer codes that are available for routine reactor
calculations; see for example, the computer package SCALE 6.0
(Jessee et al., 2009). Employing first-order GPT, one can calculate
the first-order derivatives for a given response with respect to all
parameters using only one forward and one adjoint model exe-
cutions (for the eigenvalue problem, the adjoint problem must
be solved twice, once for the fundamental adjoint, and once for
the generalized adjoint). Although very efficient, the accuracy is
degraded when the parameters perturbations are outside the range
that renders linear approximations acceptable.

With the introduction of the higher-order GPT, it has become
possible to estimate the response variations to a very high level
of accuracy (Baudron, 1998; Gandini, 1978; Greenspan and Gilai,
1978; McKinley and Rahnema, 2000; Mitani, 1973). Over the past
four decades, the GPT theory has been rigorously extended to
describe the higher-order derivatives of response. Unfortunately,
as higher-order derivatives are sought, the computational cost
becomes dependent either on the number of input parameters
(Greenspan and Gilai, 1978) or the dimension of the space used
to describe the forward solution (McKinley and Rahnema, 2000),
i.e. the flux solution, depending on the higher-order GPT approach
employed. These challenges have limited the use of GPT to linear
models and investigative studies only.

Recently, we have introduced new developments into GPT,
denoted by exact-to-precision GPT, or in short, EPGPT, with initial
application to neutron diffusion theory (Wang and Abdel-Khalik,
2012a, 2012b, 2011). The EPGPT is based on a hybrid reduced order
methodology that places a premium on computational efficiency
to enable practical use in routine engineering calculations. EPGPT
combines both the forward and adjoint solutions to reduce the
number of model executions required to calculate the variations of
all model responses with respect to all model parameters taking
into account all higher order of variations. In effect EPGPT gen-
erates a surrogate model whose functional form is determined
by the physics of radiation transport, and which can be used to
replace the original transport model for the intended reactor appli-
cation. Because of its reliance on a reduced order methodology,
the surrogate constructed via EPGPT can upper-bound its pre-
diction errors when compared to the predictions of the original
transport model. This provides an enabling tool that can be used
to analyze the impact of parameters variations on the responses
variations for a wide range of applications such as generation
of few-group constants for downstream core calculations, lattice
design/optimization, fuel loading optimization, etc.

This manuscript discusses the theory of EPGPT for transport
models in Section 2, and demonstrates its use for representative
reactor models in Section 3. Section 4 provides some remarks
about future work, and a recent implementation of the EPGPT
methodology under the SCALE6.2 BETA 2 version, in the form of
a super-sequence, denoted by CRANE, which is intended for users
to exercise the EPGPT methodology for their applications.

2. EPGPT mathematic derivation

Let  *(˛) and  (˛) both be functions of the same variables, rep-
resented by general symbol  ̨ ∈ R

k; the inner product of these two
continuous functions is then expressed and defined by〈
 ∗,  

〉
=

∫
 ∗(˛) (˛)d  ̨ (1)

where the braces represent the integration that is carried over
the whole accessible range of the variables. If  *(˛) and  (˛) are
any “well-behaved” functions, in the sense that they satisfy certain
boundary and continuity conditions, it is possible in the following
way to define an operator A* that is adjoint to A:〈
 ∗, A 

〉
=

〈
 , A∗ ∗〉 (2)

Now consider the following time-independent form of the
Boltzmann transport equation:

P(�)� = (L(�) − �F(�))� = 0 (3)

In this equation, the neutron angular flux, �, is a function of con-
tinuous variables in space, energy, and direction and is determined
by the input parameters as given by Eq. (3). The vector  ̨ of input
parameters represents the input cross-section data, isotopic com-
positions, and geometry. The P operator represents all the terms
in the transport equation, the L represents neutron loss terms only
including leakage and absorption, and the F represents the fission
process.

According to Eq. (2), the defining relationship for the neutron
transport adjoint operator is:〈
�∗, P(˛)�

〉
=

〈
�, P(˛)∗�∗〉 (4)

where �* is the solution of

P(˛)∗�∗ = 0 (5)

This equation is the adjoint transport equation and can be
derived directly from the definition of the adjoint operator in Eq.
(4) or from physical principles based upon importance. In addition,
the boundary conditions for Eq. (5) are chosen to insure that Eq. (4)
contains no boundary term contributions. The reference state with
original value of input parameters ˛0 of the system described in Eq.
(3) will be denoted as

P(˛0)�0 = 0 (6)

or briefly denoted as:

P0�0 = 0 (7)

Similarly, the reference state for adjoint equation given in Eq.
(5) can be written as

P∗
0�

∗
0 = 0 (8)

We will assume in the remainder of this discussion that there
exists a numerical method that is used to solve Eqs. (7) and (8).
Further we will assume that the numerical solution generates a
discretized solution for the angular flux and its adjoint. Let n refers
to the total number of components of the discretized angular flux.
In this context, N  = R

n is denoted as the space in which the angular
flux vector lives. The dual space is where the adjoint angular flux
belongs.

Now consider a perturbed physical system, e.g. cross sections
perturbations, control rod movements, described by

P′�′ = 0 or L′�′ − �′F′�′ = 0 (9)

This system will be referred to as the perturbed state. The prime
symbol will be used throughout this work to indicate a perturbed
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