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h  i  g  h  l  i g  h  t  s

• NEMs  are  innovatively  applied  to solve  convection  diffusion  equation.
• Stability,  accuracy  and  numerical  diffusion  for  NEM  are analyzed  for the first  time.
• Stability  and numerical  diffusion  depend  on the  NEM  expansion  order  and  its parity.
• NEMs  have  higher  accuracy  than  both  second  order  upwind  and QUICK  scheme.
• NEMs  with  different  expansion  orders  are  integrated  into  a  unified  discrete  form.
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a  b  s  t  r  a  c  t

The  traditional  finite  difference  method  or  finite  volume  method  (FDM  or FVM)  is  used  for  HTGR  thermal-
hydraulic  calculation  at present.  However,  both  FDM  and  FVM  require  the  fine mesh  sizes  to  achieve  the
desired  precision  and  thus  result  in  a  limited  efficiency.  Therefore,  a more  efficient  and  accurate  numerical
method  needs  to  be  developed.  Nodal  expansion  method  (NEM)  can  achieve  high accuracy  even  on  the
coarse  meshes  in  the  reactor  physics  analysis  so  that  the  number  of  spatial  meshes  and  computational
cost  can  be largely  decreased.  Because  of  higher  efficiency  and  accuracy,  NEM  can  be  innovatively  applied
to  thermal-hydraulic  calculation.

In the  paper,  NEMs  with  different  orders  of basis  functions  are  successfully  developed  and  applied  to
multi-dimensional  steady  convection  diffusion  equation.  Numerical  results  show  that  NEMs  with  three
or higher  order  basis  functions  can track  the  reference  solutions  very  well  and  are  superior  to  second
order  upwind  scheme  and  QUICK  scheme.  However,  the  false  diffusion  and  unphysical  oscillation  behav-
ior  are  discovered  for NEMs.  To  explain  the reasons  for  the above-mentioned  behaviors,  the stability,
accuracy  and  numerical  diffusion  properties  of  NEM  are  analyzed  by the  Fourier  analysis,  and  by  com-
paring  with  exact  solutions  of  difference  and  differential  equation.  The  theoretical  analysis  results  show
that the  accuracy  of  NEM increases  with  the  expansion  order.  However,  the  stability  and  numerical  dif-
fusion  properties  depend  not  only  on the  order  of  basis  functions  but also on  the  parity  of  the  order.  The
numerical  experiments  are carried  out to  validate  the  above  conclusions,  which  provide  some  significant
guides  for  the  development  of the  new  NEMs.  It can  be concluded  that  NEMs  have  great  potential  to  solve
thermal  hydraulic  problems  effectively,  and  can  be  used  in  the  engineering  design  code.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

High temperature gas cooled reactor (HTGR) is characterized by
the huge three-dimensional computational cost, drastic changes
in temperature and flow distribution, multi-physics and multi-
loop coupling complicated system and so on (Wang, 2011). The
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above characteristics increase the computational challenges. At the
moment, for HTGR thermal-hydraulic calculation, the traditional
finite difference method or finite volume method (FDM or FVM)
is used. However, both FDM and FVM require fine mesh size to
achieve the desired precision and thus result in a limited efficiency
(Cleveland and Greene, 1986). Therefore, a more efficient and accu-
rate numerical method for three-dimensional simulation needs to
be developed.

Nodal expansion method (NEM) attracts many attentions due
to its high efficiency and accuracy in the reactor physics analy-
sis, and it has proved to be superior to FDM  and FVM (Lawrence,
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1986). NEM is a kind of nodal method which combines the advan-
tages of FDM and finite element method (FEM). As far as accuracy,
the NEM employs piecewise continuous polynomial to approx-
imate the solution, just the same way as the FEM. In addition,
NEM generates quite sparse matrix structure as the FDM does.
Therefore, NEM can achieve high accuracy even on the coarse
meshes so that the number of spatial meshes and computational
cost can be largely decreased (Hennart, 1986). In view of the
advantages of NEM, we hope to extend NEM to solve the HTGR
thermal hydraulic problems and finally to simultaneously and
effectively solve multi-dimensional neutronic-thermal hydraulic
coupling problem of HTGR (Deng, 2013). The convection diffusion
equation is one of the fundamental equations in HTGR thermal
hydraulic problems and many thermal hydraulic problems can
be described through convection diffusion equation. However,
for convection diffusion equation using NEM, false diffusion and
unphysical oscillation behaviors are discovered in our research. So
we want to learn the numerical properties of NEMs for thermal
hydraulic problems in order to improve and implement NEM in
engineering analysis code, which is relatively rare in the previous
research.

Another nodal method, nodal integral method (NIM) has been
developed to solve thermal hydraulic problem (Michael and
Dorning, 2001; Wang, 2005; Singh, 2008), whose basic idea is that
the solutions are analytically solved in certain condition. Recently,
nodal integral expansion method (NIEM) has also been presented
to solve one-dimensional, transient convection-diffusion equation,
which combines some features of NEM and NIM (Lee, 2011). How-
ever, there exist a lot of time-consuming exponential terms in the
derivation of the above two nodal methods, and the calculation of
the pseudo-source terms is quite complicated.

Furthermore, stability, accuracy and numerical diffusion are
important criterions of appraising the numerical methods. Stabil-
ity and accuracy are always in conflict with each other. Specially,
high order accuracy methods may  lead to oscillatory while
unconditionally-stable-methods may  produce great errors because
of false diffusion (Yu et al., 2011). So both the effect of stability
and accuracy are considered rather than only one of them. In addi-
tion, when the numerical diffusion is less than the true diffusion,
the numerical method may  lead to unstable numerical solutions
in the condition of coarse mesh or high velocity. On the contrary,
when the numerical diffusion is greater than the true diffusion, the
over-diffusive behavior of numerical solutions may  be observed
(Cai et al., 2014).

Therefore, the derivation process and the numerical property
analysis of NEMs with different orders of basis functions for multi-
dimensional steady convection diffusion equation are studied and
developed. First, the formulations of NEM for multi-dimensional
steady convection diffusion equation are presented in Section 2.
Then, stability is analyzed by using Fourier analysis and exact
solutions of difference equation in Section 3. Section 4 shows the
theoretical analysis results of the numerical diffusion and numer-
ical accuracy for NEMs with different orders of basis functions. At
last, to verify the mathematical analysis, several numerical experi-
ments are carried out in Section 5, a brief summary and discussion
is presented in Section 6.

2. NEM formalism for multi-dimensional steady
convection diffusion equation

The three-dimensional, steady state, convection diffusion equa-
tion in Cartesian geometry is written as:
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where U, V, W are the velocity in the different coordinate direction,
respectively; � is the diffusivity; Q is the source term.

The derivation process of NEM for three-dimensional steady
convection diffusion equation is generally divided into three
steps: first, the transverse integration process is employed to
reduce a three-dimensional convection diffusion equation to three
one-dimensional transverse-integrated equations; second, these
solutions of one-dimensional transverse-integrated equations are
approximated by an expansion of a series of Legendre polynomials
and the expansion coefficients are determined by some constraint
conditions, after that, a set of discrete equations are obtained in
terms of nodal average variables; then, the nodal average variables
can be easily obtained by the nodal balance equations, and the
final system of discrete equations are presented. The derivations
are discussed in details.

By applying the transverse integration strategy over node (i, j,
k), the three transverse integrated equations can be written as:
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where r = x, y, z /= � /= �; � = y, z, x; � = z, x, y; K = (i, j, k); FK
x = UK ,

FK
y = VK , FK

z = WK ; UK, VK, WK and � K are the average values in the

node (i, j, k). The node volume is 2hi,j,k
x × 2hi,j,k

y × 2hi,j,k
z and the local

origin is located in node center. �K
r (r) is the r-dependent transverse-

integrated variable as shown in Fig. 1; JK
r (r) is the r-dependent

diffusion current over the � − � surface; the pseudo-source terms
SK

r (r) are divided into two terms: transverse integrated true source
term Q K

r (r) and transverse leakage term Lk
r (r).

To solve Eq. (2), �K
r (r), Q K

r (r) and LK
r (r) within each node are

approximated by an expansion of a series of Legendre polynomials.
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