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• This  new  method  does  not  require  implicit  iteration;  instead  it  time  advances  the solutions  in a similar  spirit  to  explicit  methods.
• It is unconditionally  stable,  as a fully  implicit  method  would  be.
• It exhibits  the simplicity  of  implementation  of  an  explicit  method.
• It is specifically  designed  for  slow  transient  flow  problems  of  long  duration  such  as  can  occur  inside  nuclear  reactor  coolant  systems.
• Our  findings  indicate  the  new  method  can  integrate  slow  transient  problems  very  efficiently;  and  its implementation  is  very  robust.
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a  b  s  t  r  a  c  t

We  introduce  a  point  implicit  time  integration  technique  for slow  transient  flow  problems.  The  method
treats  the  solution  variables  of interest  (that  can be  located  at cell  centers,  cell  edges,  or  cell nodes)
implicitly  and the  rest  of  the  information  related  to same  or other  variables  are handled  explicitly.  The
method  does  not  require  implicit  iteration;  instead  it  time  advances  the  solutions  in a  similar  spirit  to
explicit  methods,  except  it involves  a few  additional  function(s)  evaluation  steps.  Moreover,  the  method
is unconditionally  stable,  as  a fully  implicit  method  would  be.  This  new  approach  exhibits  the simplicity
of  implementation  of  explicit  methods  and  the stability  of  implicit  methods.  It  is  specifically  designed  for
slow  transient  flow  problems  of  long  duration  wherein  one  would  like  to perform  time  integrations  with
very  large  time  steps.  Because  the method  can  be time  inaccurate  for  fast  transient  problems,  particularly
with  larger  time  steps,  an  appropriate  solution  strategy  for a  problem  that  evolves  from  a fast  to  a  slow
transient  would  be  to integrate  the  fast  transient  with  an explicit  or semi-implicit  technique  and  then
switch  to  this  point  implicit  method  as soon  as  the  time  variation  slows  sufficiently.  We  have  solved
several  test  problems  that result  from  scalar  or systems  of  flow equations.  Our  findings  indicate  the  new
method  can  integrate  slow  transient  problems  very  efficiently;  and  its implementation  is very  robust.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In this paper, we introduce a new method for time integration
of slow transient flow problems. Slow transient flow phenomena
can occur in many engineering applications such as the dynamics
of fluid flow inside nuclear reactor coolant systems, especially in
multiphysics applications where the fluid flow is coupled to other
phenomena exhibiting a much slower time scale. As a bounding
example, the time scale of the fuel cycle in a nuclear reactor is
of order years. Thus the flow undergoes a slow transient, with
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durations of the order of the other system to which it is coupled, yet
the flow equations must be integrated over this long duration in an
efficient manner (Williamson et al., 2012). Even the interaction of
phases in the relaxation models (Berry et al., 2010) for two-phase
flow can be on a much slower scale than the corresponding single-
phase dynamics. We remark that fast transient flow dynamics can
also occur in a nuclear reactor system. For instance, waterhammer
events due to sudden valve closure or steam bubble collapse can
produce fast transient wave phenomena, and a sudden power
ramp can quickly increase the temperature of the fluid resulting
in rapid phase change with subsequent coupling back to the
neutronics. In general, the governing equations of flow dynamics
are a set of time dependent partial differential equations typically
requiring a numerical solution procedure due to lack of sufficient
analytical solution ability, e.g. Berry et al. (2014). We  would like to
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numerically solve these kinds of equations for slowly time-varying
problems. Commonly known numerical time integration methods
are the explicit,  semi-implicit, implicit, or hybrid implicit–explicit
(IMEX) methods (Thomas, 1998, 1999; Strikwerda, 1989; Leveque,
1998; Wesseling, 2000; Kadioglu and Knoll, 2011). The explicit
methods impose stringent stability criteria on time-step sizes that
can be impractical for slow transient problems. The implicit meth-
ods can take larger time steps. However, other issues such as time
inaccuracies with very large time steps, large number of functions
evaluations or matrix operations, and robustness issues can be
associated with these approaches. Semi-implicit and hybrid IMEX
methods can step over certain fine time scales (e.g., ones associated
with the acoustic waves), but they still have to follow material
Courant time stepping criteria for stability purposes (Kadioglu
et al., 2005, 2009, 2010, 2010; Kadioglu and Knoll, 2010, 2011,
2013; Ascher et al., 1995; Ruuth, 1995; Wesseling, 2000). In the
past, others have attempted to stabilize explicit time integration
methods to permit larger time-steps, e.g. Kujawski (1988), Gnoffo
(1990), Thareja and Stewart (1989). Our point implicit method
is devised to overcome most of the difficulties listed above. The
method treats the solution variables of interest (that can be located
at cell centers, cell edges, or cell nodes) implicitly, and the rest
of the information related to same or other variables are handled
explicitly. The point-wise implicit terms are expanded in Taylor
series with respect to the explicit version of the same terms, at the
same locations, resulting in a time marching method that is similar
to the explicit methods and, unlike the fully implicit methods,
does not require implicit iterations. This new method shares the
characteristics of the robust implementation of explicit methods
and the stability properties of the unconditionally stable implicit
methods. This method is specifically designed for slow transient
flow problems wherein, for efficiency, one would like to perform
time integrations with very large time steps. We  have found that
the method can be time inaccurate for fast transient problems,
particularly with larger time steps. Therefore, an appropriate
solution strategy for a problem that evolves from a fast to a slow
transient would be to integrate the fast transient with an explicit
or semi-implicit technique and then switch to this point implicit
method as soon as the time variation slows sufficiently. A major
benefit of this strategy for nuclear reactor applications will reveal
itself when fast response coolant flow is coupled to slow response
heat conduction structures for a long duration, slow transient.
In this scenario, as a result of the stable nature of numerical
solution techniques for heat conduction one can time integrate
the heat part with very large (implicit) time steps. However, such
large time-steps cannot normally be efficiently tolerated by flow
dynamics solution algorithms. Moreover, one may  have to perform
the time integration for significantly longer times for these kinds
of couplings. Our point implicit method can stably and effectively
time integrate the slowly changing, nearly steady-state, flow
model with whatever time-step sizes the other physics requires.
In addition, the numerical implementation of our method is very
robust since one can always call this method from within any
solver technology as part of the function evaluation routines.

The organization of this paper is as follows. In Section 2, the gov-
erning equations are defined. In Section 3, the numerical solution
procedure is described. In Section 4, the computational results are
presented. Section 5 contains our concluding remarks.

2. Governing equations

In the scalar test cases, we consider the one-dimensional Burg-
ers equation,
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= 0, (1)

Fig. 1. Normalized nozzle cross-sectional area.

where u corresponds to a nonlinear advection velocity. In the com-
pressible fluid flow system cases, we  consider the one-dimensional,
variable area, Euler equations,
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where �, u, p, E, are the mass density, flow velocity, fluid pressure,
and total energy of the fluid, A = A(x) represents the cross-sectional
area of the one-dimensional domain. For the demonstration exam-
ples used later we  use area distribution A(x)/A0 = 1 +0.5 cos(2�x)
on the interval [0, 1], where A0 is arbitrary (see Fig. 1). E can be
related to the other variables by E = �e + 1/2�u2. We  will be primar-
ily employing the stiffened gas equation of state (SGEOS), given by
p = (� − 1)�(e − q) − �p∞ where � , q, and p∞ are material param-
eters that can be set to model either a compressible water flow
or a compressible gas (vapor) flow (Harlow and Amsden, 1971;
LeMetayer et al., 2004). Later, we make use of SGEOS utilizing tem-
perature, p = (� − 1)�cvT − p∞, where cv is an additional material
parameter.

3. Numerical algorithm

3.1. Point implicit method for the scalar case

Suppose, we rewrite the Burgers equations as

∂u

∂t
+ ∂

∂x
[f (u)] = 0, (5)

where the flux function f (u) = 1
2 u2, then we  consider the following

discretization:
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where un
i

denotes the numerical solution at the ith cell and
the nth time level, g corresponds to the spatial discretization of
−∂f/∂x. Notice that g is the function of u at only three stencil
points because, for simplicity, we assume that ∂f/∂x is discretized
based on a first-order up-winding scheme. For a second-order
scheme, g would be a function of u at five stencil points (e.g.,
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