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• Impact  of component  unavailability  uncertainty  on  systems  unavailability  is analyzed.
• Analysis  is done  with Monte  Carlo  sampling  and min  cut  upper  bound  approximation.
• The  top  event  uncertainty  depends  on the  basic  events  unavailability  distribution.
• The  top  event  uncertainty  depends  on the  importance  of  the  basic  events.
• Introduction  of  lognormal  distribution  results  in  increased  top  event  uncertainty.
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a  b  s  t  r  a  c  t

The  increased  and  extended  application  of the  probabilistic  safety  assessment  requires  appropriate  con-
sideration  of  uncertainties  in  the  analyses  and  interpretation  of  the  results.  Inadequate  treatment  of
uncertainties  may  lead  to poorly  supported  or even  wrong  conclusions  with  final  consequence  of  loss of
adequate  level  of safety.

Epistemic  uncertainty  results  from  the  imperfect  knowledge  or  incomplete  information  regarding  the
parameters  values  in  the  underlying  model.  Epistemic  uncertainty  is  considered  in  the  probabilistic  safety
assessment  models  by  probability  distributions  associated  with  the  uncertain  parameters.

This  paper  presents  the  results  of the  analysis  of  the  introduction  of  probability  distributions  associated
with  component  unavailability  parameters,  on  the overall  unavailability  of  the  analyzed  system.  The  nor-
mal and lognormal  distributions  are  introduced  as probability  distributions  associated  with  component
unavailability.  The  minimal  cut  sets  of  the analyzed  system  are  identified  with  application  of  the  fault
tree  analysis.  The  distribution  of  the  top  event  unavailability  is  assessed  with  application  of  the  min  cut
upper  bound  approximation  and  Monte  Carlo  sampling.

The  analysis  of the  uncertainty  propagation  is  demonstrated  using  the fault  tree  of  the  auxiliary  feed-
water  system  of  the  nuclear  power  plant.  The implications  of  the  introduction  of  different  probability
distributions  for the  components  unavailability  on  the  obtained  results  are  analyzed.  Obtained  results
include  skewness  and  kurtosis  as  measures  of the  goodness-of-fit  of  the top event  unavailability  to the
normal  distribution.

Obtained  results  show  that  the  probability  density  function  of  the  top  event  depends  on  the  characteris-
tics  of  the  basic  events  unavailability  distribution  and  the  importance  of the  selected  events.  Introduction
of  the lognormal  distribution  for  uncertainty  characterization  of  the basic  events  unavailability  results  in
positive kurtosis.  Positive  kurtosis  is indicating  increased  probability  of having  top  event  unavailability
larger  than  the mean  value.

Decision  making  based  on  the  mean  value  of  the top  event  unavailability  in case  of positive  kurtosis  of
the  probability  density  function  results  in  risk  underestimation.

© 2014  Elsevier  B.V.  All  rights  reserved.
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1. Introduction

Appropriate consideration of uncertainties shall be given in
probabilistic safety assessment (PSA) and interpretation of their
results. Inadequate treatment of uncertainties may lead to poorly
supported or even wrong conclusions whose final consequence is a
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loss of adequate level of safety. Maintenance of the adequate level
of safety is especially important for the nuclear power plants as
high-consequence technology (Ahn et al., 2012; Ánchel et al., 2012;
Bouloré et al., 2012; Carlos et al., 2013; Chevalier-Jabet et al., 2014;
D’Auria et al., 2012; Lopez and Herranz, 2012; Povilaitis et al., 2013;
Trivedi et al., 2012).

There are two aspects to uncertainty that must be distinguished
and treated differently when creating models in probabilistic safety
assessment. They are termed aleatory and epistemic uncertainty
(Apostolakis, 1989, 1999; ASME, 2009; Helton et al., 2011; NRC,
2002). Aleatory uncertainty results from the effect of inherent ran-
domness or unpredictable variability of the modelled phenomenon.
Epistemic uncertainty results from the imperfect knowledge or
incomplete information regarding values of parameters of the
underlying model.

Epistemic uncertainty is typically classified into three different
classes:

- Parameter uncertainty: associated with imperfect knowledge
about the input parameter values used in the analysis.

- Model uncertainty: exists when there is no consensus approach
to modelling specific phenomena or events.

- Completeness uncertainty: representing uncertainties due to the
portion of risk that is not explicitly included in the analysis.

Parameter uncertainty relates to the uncertainty in the com-
putation of the input parameter values used to quantify the
probabilities of the basic events (BE) in the PSA. The parameters
uncertainties result from their interdependence with modelling
assumptions, lack of statistically significant data, expert opinion
and rarity of modelled events (Kurisaka et al., 2014; Mezio et al.,
2014; Vinod et al., 2008; Volkanovski and Čepin, 2011; Watanabe
et al., 2005). The most of the events in risk models in the PSA are rel-
atively rare resulting with scarce data and significant uncertainties
(Apostolakis, 1989).

The normal and lognormal distributions are two  commonly
used distributions in the PSA for consideration of the parameters
uncertainties (Breeding et al., 1985; Volkanovski and Čepin, 2011).
The main characteristics of both distributions are given in the
following section. The implications of introduction of these prob-
ability distributions for different number and sets of components
are investigated for reference nuclear power plant safety system
model. The obtained results are presented and discussed.

2. Top event unavailability analysis

Fault tree analysis is the deductive modelling tool used in PSA
to identify and assess the combinations of the undesired events
in the context of the system operation and its environment that
can lead to the undesired state of the system (Roberts et al., 1981;
Volkanovski et al., 2009). The undesired state of the system is rep-
resented by a top event. The fault tree analysis is based on Boolean
algebraic and probabilistic basis that relates probability calcula-
tions to Boolean logic functions. The logical gates integrate the
primary events to the top event, which corresponds to the unde-
sired state of the system. The primary events are the events, which
are not further developed, e.g. the basic events and the house
events. The basic events are the ultimate parts of the fault tree,
which represent the undesired events, e.g. the component or sys-
tem failures.

Two types of results are obtained from the fault tree analysis.
The qualitative results include the minimal cut sets which are the
combinations of components failures causing system failure. The
quantitative results include the numerical probabilities of the cut
sets probabilities and systems failures (Čepin and Mavko, 2002).

Unavailability of each minimal cut set is calculated using the
relation of simultaneous occurrence of independent events under
assumption that the basic events are mutually independent:

QMCSi =
m∏

j=1

QBj (1)

where QMCSi – unavailability of the minimal cut set i, QBj – proba-
bility of the basic event Bj describing failure of the component (i.e.
failure probability of component Bj), m – number of basic events in
minimal cut set i.

The quantitative fault tree analysis represents a calculation of
the top event unavailability:
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where QGD – top event unavailability of the fault tree, QMCSi∩MCSj –
probability of the intersection of the minimal cut set i and cut set j,
n – number of the identified minimal cut sets.

The expression for the top event unavailability QGD given by Eq.
(2), for mutually independent cut sets, can be written as:

QGD = 1 −
n∏

i=1

(1 − QMCSi) (3)

If there is any overlap between minimal cut sets with same basic
event occurring in more than one cut sets, then expression given
with Eq. (3) is upper bound for QGD and is known as the min cut
upper bound (Esary and Proschan, 1962, 1970; NRC, 1994). The min
cut upper bound is superior to the rare event approximation and
is widely used in standard PSA of the nuclear power plants for the
accident sequence quantification (NRC, 1994).

The quantitative results obtainable from fault tree analysis
include quantitative importance measures. The Fussell–Vesely
Importance (FV) is quantitative importance measure defined as:

FVk = 1 − QGD(Qk = 0)
QGD

(4)

where FVk – Fussell–Vesely importance for component k,
QGD(Qk = 0) – top event unavailability when component k failure
probability is set to 0.

The Fussell–Vesely importance gives fractional contribution of
the basic event unavailability to the system unavailability.

3. Distributions characteristics

3.1. Normal distribution

Normal distribution is statistical distribution used in standard
PSA for characterization of the input parameters of the basic events
(Breeding et al., 1985; Volkanovski and Čepin, 2011).

The probability density function of the normal distribution is:

f (x) = 1

�
√
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exp

[
− (x − �)2

2�2

]

− ∞ < x < ∞,  −∞ < � < ∞,  � > 0 (5)

where x – random variable, � – standard deviation, � – mean of the
distribution.

Fig. 1 shows probability density function (pdf) and cumulative
distribution function (cdf) of the normal distribution with � = 1.5
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