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HIGHLIGHTS

® Impact of component unavailability uncertainty on systems unavailability is analyzed.
® Analysis is done with Monte Carlo sampling and min cut upper bound approximation.
® The top event uncertainty depends on the basic events unavailability distribution.

® The top event uncertainty depends on the importance of the basic events.

® Introduction of lognormal distribution results in increased top event uncertainty.
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ABSTRACT

The increased and extended application of the probabilistic safety assessment requires appropriate con-
sideration of uncertainties in the analyses and interpretation of the results. Inadequate treatment of
uncertainties may lead to poorly supported or even wrong conclusions with final consequence of loss of
adequate level of safety.

Epistemic uncertainty results from the imperfect knowledge or incomplete information regarding the
parameters values in the underlying model. Epistemic uncertainty is considered in the probabilistic safety
assessment models by probability distributions associated with the uncertain parameters.

This paper presents the results of the analysis of the introduction of probability distributions associated
with component unavailability parameters, on the overall unavailability of the analyzed system. The nor-
mal and lognormal distributions are introduced as probability distributions associated with component
unavailability. The minimal cut sets of the analyzed system are identified with application of the fault
tree analysis. The distribution of the top event unavailability is assessed with application of the min cut
upper bound approximation and Monte Carlo sampling.

The analysis of the uncertainty propagation is demonstrated using the fault tree of the auxiliary feed-
water system of the nuclear power plant. The implications of the introduction of different probability
distributions for the components unavailability on the obtained results are analyzed. Obtained results
include skewness and kurtosis as measures of the goodness-of-fit of the top event unavailability to the
normal distribution.

Obtained results show that the probability density function of the top event depends on the characteris-
tics of the basic events unavailability distribution and the importance of the selected events. Introduction
of the lognormal distribution for uncertainty characterization of the basic events unavailability results in
positive kurtosis. Positive kurtosis is indicating increased probability of having top event unavailability
larger than the mean value.

Decision making based on the mean value of the top event unavailability in case of positive kurtosis of
the probability density function results in risk underestimation.
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1. Introduction

Appropriate consideration of uncertainties shall be given in
probabilistic safety assessment (PSA) and interpretation of their
results. Inadequate treatment of uncertainties may lead to poorly
supported or even wrong conclusions whose final consequence is a
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loss of adequate level of safety. Maintenance of the adequate level
of safety is especially important for the nuclear power plants as
high-consequence technology (Ahn et al., 2012; Anchel et al., 2012;
Bouloré et al., 2012; Carlos et al., 2013; Chevalier-Jabet et al., 2014;
D’Auriaetal.,2012; Lopez and Herranz, 2012; Povilaitis et al., 2013;
Trivedi et al., 2012).

There are two aspects to uncertainty that must be distinguished
and treated differently when creating models in probabilistic safety
assessment. They are termed aleatory and epistemic uncertainty
(Apostolakis, 1989, 1999; ASME, 2009; Helton et al., 2011; NRC,
2002). Aleatory uncertainty results from the effect of inherent ran-
domness or unpredictable variability of the modelled phenomenon.
Epistemic uncertainty results from the imperfect knowledge or
incomplete information regarding values of parameters of the
underlying model.

Epistemic uncertainty is typically classified into three different
classes:

- Parameter uncertainty: associated with imperfect knowledge
about the input parameter values used in the analysis.

- Model uncertainty: exists when there is no consensus approach
to modelling specific phenomena or events.

- Completeness uncertainty: representing uncertainties due to the
portion of risk that is not explicitly included in the analysis.

Parameter uncertainty relates to the uncertainty in the com-
putation of the input parameter values used to quantify the
probabilities of the basic events (BE) in the PSA. The parameters
uncertainties result from their interdependence with modelling
assumptions, lack of statistically significant data, expert opinion
and rarity of modelled events (Kurisaka et al., 2014; Mezio et al.,
2014; Vinod et al., 2008; Volkanovski and Cepin, 2011; Watanabe
etal.,2005). The most of the events in risk models in the PSA are rel-
atively rare resulting with scarce data and significant uncertainties
(Apostolakis, 1989).

The normal and lognormal distributions are two commonly
used distributions in the PSA for consideration of the parameters
uncertainties (Breeding et al., 1985; Volkanovski and Cepin, 2011).
The main characteristics of both distributions are given in the
following section. The implications of introduction of these prob-
ability distributions for different number and sets of components
are investigated for reference nuclear power plant safety system
model. The obtained results are presented and discussed.

2. Top event unavailability analysis

Fault tree analysis is the deductive modelling tool used in PSA
to identify and assess the combinations of the undesired events
in the context of the system operation and its environment that
can lead to the undesired state of the system (Roberts et al., 1981;
Volkanovski et al., 2009). The undesired state of the system is rep-
resented by a top event. The fault tree analysis is based on Boolean
algebraic and probabilistic basis that relates probability calcula-
tions to Boolean logic functions. The logical gates integrate the
primary events to the top event, which corresponds to the unde-
sired state of the system. The primary events are the events, which
are not further developed, e.g. the basic events and the house
events. The basic events are the ultimate parts of the fault tree,
which represent the undesired events, e.g. the component or sys-
tem failures.

Two types of results are obtained from the fault tree analysis.
The qualitative results include the minimal cut sets which are the
combinations of components failures causing system failure. The
quantitative results include the numerical probabilities of the cut
sets probabilities and systems failures (Cepin and Mavko, 2002).

Unavailability of each minimal cut set is calculated using the
relation of simultaneous occurrence of independent events under
assumption that the basic events are mutually independent:

Quesi = [ [ (1)

j=1

where Qucsi — unavailability of the minimal cut set i, Qg; — proba-
bility of the basic event B; describing failure of the component (i.e.
failure probability of component B;), m - number of basic events in
minimal cut set i.

The quantitative fault tree analysis represents a calculation of
the top event unavailability:

Qep = ZQMCSi - ZQMCS,ﬂ mcsi + Z QMCSinMCSjﬂMCSk
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where Qgp - top event unavailability of the fault tree, Qucsinmcsj =
probability of the intersection of the minimal cut set i and cut set j,
n - number of the identified minimal cut sets.

The expression for the top event unavailability Qgp given by Eq.
(2), for mutually independent cut sets, can be written as:

n

Qep =1-J(1 - Ques) (3)

i=1

If there is any overlap between minimal cut sets with same basic
event occurring in more than one cut sets, then expression given
with Eq. (3) is upper bound for Qgp and is known as the min cut
upper bound (Esary and Proschan, 1962, 1970; NRC, 1994). The min
cut upper bound is superior to the rare event approximation and
is widely used in standard PSA of the nuclear power plants for the
accident sequence quantification (NRC, 1994).

The quantitative results obtainable from fault tree analysis
include quantitative importance measures. The Fussell-Vesely
Importance (FV) is quantitative importance measure defined as:

Qcp(Q = 0)
FV, =1 D k= =) 4
k Qcp )
where FV), - Fussell-Vesely importance for component Kk,

Qcp(Qi=0) - top event unavailability when component k failure
probability is set to 0.

The Fussell-Vesely importance gives fractional contribution of
the basic event unavailability to the system unavailability.

3. Distributions characteristics
3.1. Normal distribution

Normal distribution is statistical distribution used in standard
PSA for characterization of the input parameters of the basic events
(Breeding et al., 1985; Volkanovski and Cepin, 2011).

The probability density function of the normal distribution is:

1 (x—p)
X) = ex -
0= = p{ 202
—00 <X <00, —00< L <00, 0>0 (5)

where x - random variable, o - standard deviation, ; - mean of the
distribution.

Fig. 1 shows probability density function (pdf) and cumulative
distribution function (cdf) of the normal distribution with pu=1.5
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