

Contents lists available at ScienceDirect

Nuclear Engineering and Design

journal homepage: www.elsevier.com/locate/nucengdes

Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

Nuclear Engineering and Design

Pratap Sathiah^{a,*}, Ferry Roelofs^{b,1}

^a Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR, United Kingdom ^b Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755ZG Petten, The Netherlands

HIGHLIGHTS

- A CFD based method is proposed for the simulation of sodium pool combustion.
- A sodium evaporation based model is proposed to model sodium pool evaporation.
- The proposed method is validated against sodium pool experiments of Newman and Payne.
- The results obtained using the proposed method are in good agreement with the experiments.

ARTICLE INFO

Article history: Received 20 August 2013 Received in revised form 15 May 2014 Accepted 19 May 2014

ABSTRACT

The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate.

Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Liquid sodium is used as a coolant in sodium cooled fast reactors because it has excellent thermophysical properties. In particular, it has a high thermal conductivity, a low absorption rate of fast neutrons and a good fuel breeding performance. Moreover, it can

¹ Tel.: +31 224568045.

be present in the liquid state in a wide range of temperatures. This enables liquid sodium to be used as a coolant.

However, liquid sodium is highly reactive when it is exposed to air or water, hence can be a potential fire hazard in a nuclear reactor. The leaked sodium essentially burns in two different modes, i.e., the spray and pool mode. Pool combustion continues for a long time in comparison to spray combustion and hence can have a more destructive effect on the equipments.

Several sodium leak and subsequent sodium fire accidents were reported in literature (Sathiah, 2013; Takata., 2007). For example, a sodium fire accident occurred on 8th December 1995 in Japanese Liquid Metal Fast Breeder Reactor (LFMBR) Monju, Tsuruga, Japan. Due to intense vibration, a pipe carrying sodium coolant cracked,

^{*} Corresponding author. Tel.: +44 7580477607.

E-mail addresses: pratap.sathiah78@gmail.com, sathiah@nrg.eu (P. Sathiah), roelofs@nrg.eu (F. Roelofs).

http://dx.doi.org/10.1016/j.nucengdes.2014.05.037 0029-5493/© 2014 Elsevier B.V. All rights reserved.

Nomenclature

LFMBR Liquid Metal Fast Breeder Reactor CFD Computational Fluid Dynamics UDF User Defined Functions SOPA Sodium Pool Fire Analysis DO Discreet Ordinate PDF Probability Distribution Function $T_{P,g}$ gas mixture heat capacity at constant pressure [J/kg K] t time [s] a absorption coefficient of the gas due to the presence of aerosol particles [] D_f diffusivity [m ² s ⁻¹] k_g gas mixture thermal conductivity [Wm ⁻¹ K ⁻¹] s stoichiometric ratio [.] x_j coordinates in j-direction [m] u_j velocity in j-direction [m] u_j velocity in j-direction [m] f mixture fraction [-] C_g constant [-] H total enthalpy [J/kg] S_h heat loss or gain [Wm ⁻³] Y_j mass fraction of species j [-] m mass evaporation rate [kg m ⁻³ s ⁻¹] k_c mass transfer coefficient [ms ⁻¹] $Y_{f,\infty}$ mass fraction of species j [-] m mass evaporation rate [kg m ⁻³ s ⁻¹] k_c mass transfer coefficient [ms ⁻¹] $Y_{f,\infty}$ mass fraction of sodium at the pool surface [-] $Y_{f,\infty}$ mass fraction of sodium at the pool surface [-] $Y_{f,\infty}$ mass fraction of sodium at the pool surface [-] $Y_{f,\infty}$ mass fraction of sodium dixide [-] Le Levis number [-] Pr Prandtl number [-] Rr constant [-] M_f molecular weight of fuel species [g mol ⁻¹] M_g molecular weight of fuel species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] H_{g} heat of evaporation [J/kg] T temperature [K] L equivalent thickness of gas [K] C_p heat capacity of liquid sodium [kg ⁻¹ K ⁻¹] h heat transfer coefficient [Wm ⁻²] Pr pressure [Pa] C_2 constant [-] P_f pressure [Pa] C_2 constant [-] P pressure [Pa] ϕ gas density [kg m ⁻³] ϕ oxidizer-fuel coupling function [-] a β -PDF parameter [-]		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I FMBR	Liquid Metal Fast Breeder Reactor
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
SOPASodium Pool Fire AnalysisDODiscreet OrdinatePDFProbability Distribution Function $C_{p,g}$ gas mixture heat capacity at constant pressure $[]/kg]K]$ tttime [s]aabsorption coefficient of the gas due to the presenceof aerosol particles [] D_f diffusivity $[m^2 s^{-1}]$ k_g gas mixture thermal conductivity $[Wm^{-1}K^{-1}]$ S stoichiometric ratio [-] k_g gas mixture thermal conductivity $[Wm^{-1}K^{-1}]$ S stoichiometric ratio [-] k_g gas mixture fraction $[ms^{-2}]$ f mixture fraction $[-]$ f_g constant [-] H total enthalpy []/kg] S_n heat loss or gain $[Wm^{-3}]$ Y_j mass fraction of species j [-] h_j enthalpy of species j [-] h_j enthalpy of species j [-] h_j mass fraction of sodium at the pool surface [-] $Y_{ha_2o_2}$ mass fraction of sodium dixide [-] Le Lewis number [-] Pr Prandtl number [-] R surface themperature of the pool [K] T_1 liquid temperature [K] Q_f total heat flux $[Wm^{-2}]$ H_{g} heat of evaporation []/kg] T temperature [K] C_g constant [-] H_f molecular weight of fuel species [gmol^{-1}] f_f molecular weight of gas species [gmol^{-1}] H_g heat of evaporation []/kg] T temp		
DODiscreet OrdinatePDFProbability Distribution Function PPF Joint Probability Distribution Function $C_{p,g}$ gas mixture heat capacity at constant pressure $[]/kg$ K t time [s] a absorption coefficient of the gas due to the presenceof aerosol particles [] D_f diffusivity $[m^2 s^{-1}]$ k_g gas mixture thermal conductivity $[Wm^{-1} K^{-1}]$ S stoichiometric ratio [·] x_j coordinates in j-direction [m] u_j velocity in j-direction [m] u_j velocity in j-direction [ms^2] f mixture fraction [-] S_m mass source term [kg m^{-3} s^{-1}] g_i gravity acceleration [ms^{-2}] f mixture fraction [-] C_g constant [-] H total enthalpy [J/kg] S_h heat loss or gain [Wm^{-3}] Y_j mass fraction of species j [-] h_i enthalpy of species j [-] h_i enthalpy of species j [-] h_i mass fraction of sodium at the pool surface [-] Y_{fs} mass fraction of sodium at the ambient [-] Y_{fs0} mass fraction of sodium at the ambient [-] Y_{fac_20} mass fraction of sodium at the apool surface [-] h_{fac} mass fraction of sodium dioxide [-] le Lewis number [-] n constant [-] M_{fac} molecular weight of fuel species [g mol^{-1}] h_{fac} molecular weight of fuel species [g mol^{-1}] <td></td> <td></td>		
PDFProbability Distribution Function Q_{pg} gas mixture heat capacity at constant pressure $[J/kg][]$ t time [s] a absorption coefficient of the gas due to the presenceof aerosol particles [] D_f diffusivity $[m^2 s^{-1}]$ kg gas mixture thermal conductivity $[Wm^{-1}K^{-1}]$ S stoichiometric ratio [.] x_j coordinates in j-direction [m] u_j velocity in j-direction [m] u_j velocity in j-direction [ms] S_m mass source term $[kg m^{-3} s^{-1}]$ g_i gravity acceleration $[ms^{-2}]$ f mixture fraction [-] C_g constant [-] H total enthalpy $[J/kg]$ S_h heat loss or gain $[Wm^{-3}]$ Y_j mass fraction of species j [-] h_i enthalpy of species j [-] h_i enthalpy of species j [-] h_i mass fraction of sodium at the pool surface [-] $Y_{f,\infty}$ mass fraction of sodium dioxide [-] k_c mass fraction of sodium dioxide [-] P_0 mass fraction of sodium dioxide [-] P_1 Prandtl number [-] $N_{x0,o2}$ mass fraction of gas species [g mol^{-1}] M_f molecular weight of fuel species [g mol^{-1}] M_f molecular weight of fuel species [g mol^{-1}] M_f molecular weight of fuel species [g mol^{-1}] N_f molecular weight of fuel species [g mol^{-1}] f_1 liquid temperature [K] Q_f total hea		
$\begin{array}{rcl} JPDF & Joint Probability Distribution Function \\ C_{p,g} & gas mixture heat capacity at constant pressure \\ & []/kg K] & time [s] \\ a & absorption coefficient of the gas due to the presence of aerosol particles [] \\ D_f & diffusivity [m^2 s^{-1}] & kg & gas mixture thermal conductivity [Wm^{-1}K^{-1}] \\ S & stoichiometric ratio [·] & xj & coordinates in j-direction [m] \\ u_j & velocity in j-direction [m] \\ u_j & velocity in j-direction [ms] \\ S_m & mass source term [kg m^{-3}s^{-1}] \\ gi & gravity acceleration [ms^{-2}] \\ f & mixture fraction [-] \\ C_g & constant [-] \\ H & total enthalpy []/kg] \\ S_h & heat loss or gain [Wm^{-3}] \\ Y_j & mass fraction of species j [-] \\ h_j & enthalpy of species j [-] \\ h_j & enthalpy of species j [-] \\ h_j & enthalpy of species j [-] \\ h_j & mass fraction of sodium at the pool surface [-] \\ Y_{f,\infty} & mass fraction of sodium at the ambient [-] \\ Y_{0,2} & mass fraction of sodium at the ambient [-] \\ Y_{0,2} & mass fraction of sodium at the ambient [-] \\ Pr & Prandtl number [-] \\ Sc & Schmidt number [-] \\ n & constant [-] \\ M_f & molecular weight of fuel species [g mol^{-1}] \\ M_g & molecular weight of space [g mol^{-1}] \\ H_g & heat of evaporation []/kg] \\ T & temperature [K] \\ L & equivalent thickness of gas [K] \\ C_p & heat capacity of liquid sodium []kg^{-1}K^{-1}] \\ h & heat transfer coefficient [Wm^{-2}] \\ H_{I} & enthalpy of liquid []kg^{-2}] \\ Pr_t & turbulent Prandtl number [-] \\ P_f_{f,s} & saturation vapor pressure at pool surface [Pa] \\ P & pressure [Pa] \\ C_2 & constant [-] \\ H_i & enthalpy of liquid []kg^{-2}] \\ Pr_t & turbulent Prandtl number [-] \\ P_f_{f,s} & saturation vapor pressure at pool surface [Pa] \\ P & pressure [Pa] \\ C_2 & constant [-] \\ H_i & enthalpy of liquid []kg^{-2}] \\ P_i & pressure [Pa] \\ V & volume fraction of aerosols [\cdot] \\ P & pressure [Pa] \\ \psi & Pentagamma function [\cdot] \\ \lambda_m & reference wavelength [m] \\ \rho_a & aerosol density [kg m^{-3}] \\ \gamma & oxidizer-fuel coupling function [\cdot] \\ \end{array}$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
[J/kg K] t	JPDF	
t time [s] a absorption coefficient of the gas due to the presence of aerosol particles [] Df diffusivity $[m^2 s^{-1}]$ kg gas mixture thermal conductivity $[Wm^{-1}K^{-1}]$ S stoichiometric ratio [-] xj coordinates in j-direction [m] uj velocity in j-direction [ms] Sm mass source term $[kg m^{-3}s^{-1}]$ gi gravity acceleration $[ms^{-2}]$ f mixture fraction [-] Cg constant [-] H total enthalpy []/kg] Sh heat loss or gain $[Wm^{-3}]$ Yj mass fraction of species j [-] hj enthalpy of species j [-] hj enthalpy of species j [-] m mass evaporation rate $[kg m^{-3} s^{-1}]$ kc mass transfer coefficient $[ms^{-1}]$ Yf ₅ mass fraction of sodium at the pool surface [-] H pr mass fraction of sodium at the pool surface [-] $Y_{f_{20}}$ mass fraction of sodium at the moient [-] Y_{02} mass fraction of sodium dioxide [-] Le Lewis number [-] Pr Prandtl number [-] Sc Schmidt number [-] Mf molecular weight of fuel species [g mol ⁻¹] Mg molecular weight of species [g mol ⁻¹] Mg molecular weight of species [g mol ⁻¹] H heat transfer coefficient [Wm ⁻²] Hfg heat of evaporation [J/kg] T temperature [K] L equivalent thickness of gas [K] Cp heat capacity of liquid sodium []kg ⁻¹ K ⁻¹] h heat transfer coefficient [Wm ⁻²] Hfg heat of evaporation [J/kg] T turbulent Prandtl number [-] P pressure [Pa] C2 constant [-] F_{5} saturation vapor pressure at pool surface [Pa] P pressure [Pa] ψ Pentagamma function [-] λ_m reference wavelength [m] ρ_a aerosol density [kg m ⁻³] φ oxidizer-fuel coupling function [-]	$C_{p,g}$	gas mixture heat capacity at constant pressure
aabsorption coefficient of the gas due to the presence of aerosol particles [] D_f diffusivity [m ² s ⁻¹] k_g gas mixture thermal conductivity [Wm ⁻¹ K ⁻¹] S stoichiometric ratio [-] k_g coordinates in j-direction [m] u_j velocity in j-direction [ms] S_m mass source term [kg m ⁻³ s ⁻¹] g_i gravity acceleration [ms ⁻²] f mixture fraction [-] C_g constant [-] H total enthalpy [J/kg] S_h heat loss or gain [Wm ⁻³] Y_j mass fraction of species j [-] m mass fraction of species j [-] m mass fraction of species j [-] m mass fraction of sodium at the pool surface [-] $Y_{f,s}$ mass fraction of sodium at the ambient [-] Y_{O_2} mass fraction of sodium dioxide [-] Le Lewis number [-] Pr Prandtl number [-] S_c Schmidt number [-] R_g molecular weight of fuel species [g mol ⁻¹] M_g molecular weight of species [g mol ⁻¹] M_g molecular weight of species [g mol ⁻¹] R_f heat of evaporation [J/kg] T temperature [K] Q_f total heat flux [Wm ⁻²] H_f heat flux [Wm ⁻²] H_f heat of evaporation [J/kg] T temperature [K] Q_f total heat flux [Wm ⁻²] H_f heat of evaporation [J/kg] T temperature [K] Q_f total heat flux [[J/kg K]
aabsorption coefficient of the gas due to the presence of aerosol particles [] D_f diffusivity [m ² s ⁻¹] k_g gas mixture thermal conductivity [Wm ⁻¹ K ⁻¹] S stoichiometric ratio [-] k_g coordinates in j-direction [m] u_j velocity in j-direction [ms] S_m mass source term [kg m ⁻³ s ⁻¹] g_i gravity acceleration [ms ⁻²] f mixture fraction [-] C_g constant [-] H total enthalpy [J/kg] S_h heat loss or gain [Wm ⁻³] Y_j mass fraction of species j [-] m mass fraction of species j [-] m mass fraction of species j [-] m mass fraction of sodium at the pool surface [-] $Y_{f,s}$ mass fraction of sodium at the ambient [-] Y_{O_2} mass fraction of sodium dioxide [-] Le Lewis number [-] Pr Prandtl number [-] S_c Schmidt number [-] R_g molecular weight of fuel species [g mol ⁻¹] M_g molecular weight of species [g mol ⁻¹] M_g molecular weight of species [g mol ⁻¹] R_f heat of evaporation [J/kg] T temperature [K] Q_f total heat flux [Wm ⁻²] H_f heat flux [Wm ⁻²] H_f heat of evaporation [J/kg] T temperature [K] Q_f total heat flux [Wm ⁻²] H_f heat of evaporation [J/kg] T temperature [K] Q_f total heat flux [t	time [s]
of aerosol particles [] D_f diffusivity $[m^2 s^{-1}]$ k_g gas mixture thermal conductivity $[Wm^{-1} K^{-1}]$ S stoichiometric ratio [.] x_j coordinates in <i>j</i> -direction $[m]$ u_j velocity in <i>j</i> -direction $[m]$ u_j velocity in <i>j</i> -direction $[m]^{-3}$ S_m mass source term $[kg m^{-3} s^{-1}]$ g_i gravity acceleration $[m^{-2}]$ f mixture fraction $[-]C_g constant [-]H$ total enthalpy $[]/kg]S_h heat loss or gain [Wm^{-3}]Y_j mass fraction of species j [-]h_j enthalpy of species j [-]m mass evaporation rate [kg m^{-3} s^{-1}]k_c mass transfer coefficient [ms^{-1}]Y_{f,\infty} mass fraction of sodium at the pool surface [-]Y_{f,\infty} mass fraction of sodium at the ambient [-]Y_{0_2} mass fraction of sodium dioxide [-]Le$ Lewis number $[-]Pr$ Prandtl number $[-]n$ constant $[-]M_f molecular weight of fuel species [g mol^{-1}]T_s surface temperature of the pool [K]T_i liquid temperature [K]Q_f total heat flux [Wm^{-2}]H_{fg} heat of evaporation [J/kg]T$ temperature $[K]L$ equivalent thickness of gas $[K]c_p heat capacity of liquid sodium [lgg^{-1}K^{-1}]h heat transfer coefficient [Wm^{-2}]H_i enthalpy of liquid [lgg^{-2}]Pr_t turbulent Prandtl number [-]P_f pressure [Pa]Q_2 constant [-]f_y volume fraction of aerosols [\cdot]P$ pressure $[Pa]\psi Pentagamma function [-]\lambda_m reference wavelength [m]\rho_a aerosol density [kg m^{-3}]\gamma oxidizer-fuel coupling function [-]$	а	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
k_g gas mixture thermal conductivity $[Wm^{-1}K^{-1}]$ S stoichiometric ratio $[.]$ x_j coordinates in <i>j</i> -direction $[m]$ u_j velocity in <i>j</i> -direction $[m/s]$ S_m mass source term $[kgm^{-3}s^{-1}]$ g_i gravity acceleration $[ms^{-2}]$ f mixture fraction $[-]$ C_g constant $[-]$ H total enthalpy $[]/kg]$ S_h heat loss or gain $[Wm^{-3}]$ Y_j mass fraction of species $j[-]$ h_j enthalpy of species $j[-]$ m mass fraction of species $j[-]$ m mass evaporation rate $[kgm^{-3}s^{-1}]$ k_c mass fraction of sodium at the pool surface $[-]$ Y_{fs} mass fraction of sodium at the pool surface $[-]$ Y_{fs} mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ $Y_{na_2O_2}$ mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Pr Prandtl number $[-]$ R_f molecular weight of fuel species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ T temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[]/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ C_p heat capacity of liquid sodium $[]kg^{-1}K^{-1}]$ h_i enthalpy of liquid $[]kg^{-2}]$ Pr_t turbulent Prandtl number $[-]$	Dc	
Sstoichiometric ratio [-] k_j coordinates in j-direction [m] u_j velocity in j-direction [m/s] S_m mass source term [kg m ⁻³ s ⁻¹] g_i gravity acceleration [ms ⁻²] f mixture fraction [-] C_g constant [-] H total enthalpy [J/kg] S_h heat loss or gain [Wm ⁻³] Y_j mass fraction of species j [-] h_j enthalpy of species j [-] h_j enthalpy of species j [-] h_j enthalpy of species j [-] k_c mass transfer coefficient [ms ⁻¹] K_c mass fraction of sodium at the pool surface [-] $Y_{f,\infty}$ mass fraction of sodium dioxide [-] Le Lewis number [-] Y_o mass fraction of sodium dioxide [-] Le Lewis number [-] R constant [-] M_f molecular weight of fuel species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g molecular weight of species [g mol ⁻¹] M_g molecular weight of species [g mol ⁻¹] M_g heat of evaporation [J/kg] T temperature [K] Q_f total heat flux [Wm ⁻²] H_{fg} heat capacity of liquid sodium [J kg ⁻¹ K ⁻¹] h heat transfer coefficient [Wm ⁻²] H_g heat of evaporation [J/kg] T temperature [K] Q_f total heat flux [Wm ⁻²] H_g heat of evaporation [J kg ⁻¹ K ⁻¹] h heat transfer coefficient [Wm		
x_j coordinates in j-direction [m] u_j velocity in j-direction [m/s] S_m mass source term [kg m ⁻³ s ⁻¹] g_i gravity acceleration [ms ⁻²] f mixture fraction [-] C_g constant [-] H total enthalpy []/kg] S_h heat loss or gain [Wm ⁻³] Y_j mass fraction of species j [-] h_i enthalpy of species j [-] h_i enthalpy of species j [-] k_c mass transfer coefficient [ms ⁻¹] $Y_{f,s}$ mass fraction of sodium at the pool surface [-] $Y_{f,s}$ mass fraction of sodium dioxide [-] V_{Q_2} mass fraction of sodium dioxide [-] Le Lewis number [-] $Y_{Na_2O_2}$ mass fraction of sodium dioxide [-] R molecular weight of fuel species [g mol ⁻¹] M_f molecular weight of fuel species [g mol ⁻¹] M_f molecular weight of gas species [g mol ⁻¹] M_f molecular weight of fuel species [g mol ⁻¹] M_f molecular weight of fuel species [g mol ⁻¹] M_f nolecular weight of gas [K] C_p total heat flux [Wm ⁻²] H_{fg} heat of evaporation []/kg] T temperature [K] Q_f total heat flux [Wm ⁻²] H_f heat capacity of liquid sodium [] kg ⁻¹ K ⁻¹] h heat transfer coefficient [Wm ⁻²] h_f equivalent thickness of gas [K] C_p constant [-] P_f yressure [Pa] ψ volume fraction of aerosols	rg C	
$\begin{array}{lll} \begin{array}{lll} S_m & \mbox{mass source term [kg m^{-3} s^{-1}] \\ g_i & \mbox{gravity acceleration [ms^{-2}]} \\ f & \mbox{mixture fraction [-]} \\ C_g & \mbox{constant [-]} \\ H & \mbox{total enthalpy [J/kg]} \\ S_h & \mbox{heat loss or gain [Wm^{-3}]} \\ Y_j & \mbox{mass fraction of species } j [-] \\ h_j & \mbox{enthalpy of species } j [-] \\ m & \mbox{mass revaporation rate [kg m^{-3} s^{-1}]} \\ k_c & \mbox{mass transfer coefficient [ms^{-1}]} \\ Y_{f,s} & \mbox{mass fraction of sodium at the pool surface [-]} \\ Y_{f,s} & \mbox{mass fraction of sodium at the ambient [-]} \\ Y_{f,s} & \mbox{mass fraction of sodium at the ambient [-]} \\ Y_{02} & \mbox{mass fraction of sodium dioxide [-]} \\ Le & \mbox{Lewis number [-]} \\ Pr & \mbox{Prandtl number [-]} \\ N_f & \mbox{molecular weight of fuel species [g mol^{-1}]} \\ M_f & \mbox{molecular weight of gas species [g mol^{-1}]} \\ T_i & \mbox{liquid temperature [K]} \\ Q_f & \mbox{total heat flux [Wm^{-2}]} \\ H_{fg} & \mbox{heat of evaporation [J/kg]} \\ T & \mbox{temperature [K]} \\ L & \mbox{equivalent thickness of gas [K]} \\ C_p & \mbox{heat capacity of liquid sodium [Jkg^{-1} K^{-1}]} \\ h & \mbox{heat transfer coefficient [Wm^{-2}]} \\ H_i & \mbox{enthalpy of liquid [Jkg^{-2}]} \\ Pr_t & \mbox{turbulent Prandtl number [-]} \\ P_s & \mbox{saturation vapor pressure at pool surface [Pa]} \\ P & \mbox{pressure [Pa]} \\ C_2 & \mbox{constant [-]} \\ B_k & \mbox{constant [-]} \\ P & \mbox{pressure [Pa]} \\ \psi & \mbox{Pentagamma function [-]} \\ \lambda_m & \mbox{reference wavelength [m]} \\ \rho_a & \mbox{aecosol density [kg m^{-3}]} \\ \rho_i & \mbox{gas density [kg m^{-3}]} \\ \rho_i & \mbox{gas density [kg m^{-3}]} \\ \rho_i & \mbox{oxidizer-fuel coupling function [-]} \\ \end{array} \right$	Xj	
g_i gravity acceleration $[ms^{-2}]$ f mixture fraction $[-]$ C_g constant $[-]$ H total enthalpy $[J/kg]$ S_h heat loss or gain $[Vm^{-3}]$ Y_j mass fraction of species $j [-]$ h_j enthalpy of species $j [-]$ h_j enthalpy of species $j [-]$ h_j enthalpy of species $j [-]$ k_c mass transfer coefficient $[ms^{-1}]$ k_c mass fraction of sodium at the pool surface $[-]$ $Y_{f,\infty}$ mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Y_{0_2} mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Na_2O_2 mass fraction of sodium dioxide $[-]$ R radit number $[-]$ R_c Schmidt number $[-]$ R_c sumbar $[-]$ M_f molecular weight of fuel species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ T liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ h_f heat transfer coefficient $[Wm^{-2}]$ h_f heat transfer coefficient $[Wm^{-2}]$ h_f <t< td=""><td>u_j</td><td>velocity in <i>j</i>-direction $[m/s]$</td></t<>	u _j	velocity in <i>j</i> -direction $[m/s]$
fmixture fraction $[-]$ C_g constant $[-]$ H total enthalpy []/kg] S_h heat loss or gain [Wm ⁻³] Y_j mass fraction of species $j [-]$ h_j enthalpy of species $j [-]$ h_j enthalpy of species $j [-]$ m mass evaporation rate [kg m ⁻³ s ⁻¹] k_c mass transfer coefficient [ms ⁻¹] $Y_{f,s}$ mass fraction of sodium at the pool surface $[-]$ $Y_{f,\infty}$ mass fraction of sodium at the ambient $[-]$ Y_{O_2} mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Pr Prandtl number $[-]$ Pr Prandtl number $[-]$ R_f molecular weight of fuel species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_f molecular weight of gas species [g mol ⁻¹] T_i liquid temperature [K] Q_f total heat flux [Wm ⁻²] H_{fg} heat of evaporation []/kg] T temperature [K] L equivalent thickness of gas [K] C_p heat capacity of liquid sodium [] kg ⁻¹ K ⁻¹] h heat transfer coefficient [Wm ⁻²] h_l enthalpy of liquid [] kg ⁻²] P_r turbulent Prandtl number [-] P_s saturation vapor pressure at pool surface [Pa] P pressure [Pa] ψ Pentagamma function [-] h_a aerosol density [kg m ⁻³] ρ_a aerosol density [kg m ⁻³]		mass source term [kg m ⁻³ s ⁻¹]
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Htotal enthalpy [J/kg] S_h heat loss or gain [Wm ⁻³] Y_j mass fraction of species $j [-]$ h_j enthalpy of species $j [-]$ C_{pj} specific heat capacity of species $j [-]$ m mass evaporation rate [kg m ⁻³ s ⁻¹] k_c mass fraction of sodium at the pool surface [-] $Y_{f,s}$ mass fraction of sodium at the ambient [-] Y_{0_2} mass fraction of sodium dioxide [-] Le Lewis number [-] $Y_{na_2O_2}$ mass fraction of sodium dioxide [-] Le Lewis number [-] R Prandtl number [-] R constant [-] M_f molecular weight of fuel species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g temperature [K] U equivalent thickness of gas [K] C_p heat of evaporation [J/kg] T temperature [K] L equivalent thickness of gas [K] C_p heat capacity of liquid sodium [J kg ⁻¹ K ⁻¹] h heat transfer coefficient [Wm ⁻²] h_i enthalpy of liquid [J kg ⁻²] P_T turbulent Prandtl number [-] P_{fs} saturation vapor pressure at pool surface [Pa] P pressure [Pa]		
$ S_h \ heat loss or gain [Wm^{-3}] Y_j \ mass fraction of species j [-] h_j \ enthalpy of species j [-] fin mass evaporation rate [kg m^{-3} s^{-1}] k_c \ mass transfer coefficient [ms^{-1}] Y_{f,s} \ mass fraction of sodium at the pool surface [-] Y_{f,s} \ mass fraction of sodium at the ambient [-] Y_{f_{02}} \ mass fraction of sodium dioxide [-] Le usis number [-] Pr prandtl number [-] Pr Prandtl number [-] R_f \ molecular weight of fuel species [g mol^{-1}] Mg molecular weight of gas species [g mol^{-1}] Mg molecular weight of gas species [g mol^{-1}] T_s surface temperature of the pool [K] T_l liquid temperature [K] Q_f total heat flux [Wm^{-2}] H_{fg} heat of evaporation [J/kg] T temperature [K] L equivalent thickness of gas [K] C_p heat capacity of liquid sodium [] kg^{-1} K^{-1}] h heat transfer coefficient [Wm^{-2}] h_l enthalpy of liquid [J kg^{-2}] Pr_t turbulent Prandtl number [-] P_{f,s} saturation vapor pressure at pool surface [Pa] P pressure [Pa] C_2 constant [-] Bs constant [-] f_{V} volume fraction of aerosols [-] P pressure [Pa] \phi Pentagamma function [-] \phi_m aerosol density [kg m^{-3}] \phi_m aerosol density [kg m^{-3}] p_l liquid density [kg m^{-3}] p_l liquid density [kg m^{-3}] p_l liquid density [kg m^{-3}] p_i xitizer-fuel coupling function [-]$	C_g	constant [–]
Y_j mass fraction of species $j[-]$ h_j enthalpy of species $j[-]$ $C_{p,j}$ specific heat capacity of species $j[-]$ m mass evaporation rate $[kgm^{-3}s^{-1}]$ k_c mass transfer coefficient $[ms^{-1}]$ $Y_{j,s}$ mass fraction of sodium at the pool surface $[-]$ $Y_{j,\infty}$ mass fraction of sodium at the ambient $[-]$ Y_{0_2} mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Pr Prandtl number $[-]$ Pr Prandtl number $[-]$ R_c surface temperature of the pool $[K]$ T_l liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ C_p heat capacity of liquid sodium $[Jkg^{-1}K^{-1}]$ h heat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[Jkg^{-2}]$ Prt turbulent Prandtl number $[-]$ P_{fs} saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ ψ Pentagamma function $[\cdot]$ λ_m reference wavelength $[m]$ ρ_a acrosol density $[kgm^{-3}]$ ρ_l liquid density $[kgm^{-3}]$ γ oxidizer-fuel coupling function $[\cdot]$	Н	total enthalpy [J/kg]
Y_j mass fraction of species $j[-]$ h_j enthalpy of species $j[-]$ $C_{p,j}$ specific heat capacity of species $j[-]$ m mass evaporation rate $[kgm^{-3}s^{-1}]$ k_c mass transfer coefficient $[ms^{-1}]$ $Y_{j,s}$ mass fraction of sodium at the pool surface $[-]$ $Y_{j,\infty}$ mass fraction of sodium at the ambient $[-]$ Y_{0_2} mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Pr Prandtl number $[-]$ Pr Prandtl number $[-]$ R_c surface temperature of the pool $[K]$ T_l liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ C_p heat capacity of liquid sodium $[Jkg^{-1}K^{-1}]$ h heat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[Jkg^{-2}]$ Prt turbulent Prandtl number $[-]$ P_{fs} saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ ψ Pentagamma function $[\cdot]$ λ_m reference wavelength $[m]$ ρ_a acrosol density $[kgm^{-3}]$ ρ_l liquid density $[kgm^{-3}]$ γ oxidizer-fuel coupling function $[\cdot]$	S_h	heat loss or gain [Wm ⁻³]
<i>m</i> mass evaporation rate $[kg m^{-3} s^{-1}]$ k_c mass transfer coefficient $[ms^{-1}]$ $Y_{f,s}$ mass fraction of sodium at the pool surface $[-]$ $Y_{f,\infty}$ mass fraction of sodium dioxide $[-]$ V_{0_2} mass fraction of sodium dioxide $[-]$ V_{0_2} mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Pr Prandtl number $[-]$ Pr Prandtl number $[-]$ n constant $[-]$ M_f molecular weight of fuel species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ T_i liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ c_p heat capacity of liquid sodium $[] kg^{-1} K^{-1}]$ h heat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[] kg^{-2}]$ Pr_t turbulent Prandtl number $[-]$ $P_{f,s}$ saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ c_2 constant $[-]$ f_v volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ϕ pressure $[Pa]$ ϕ s constant $[-]$ ρ gas density $[kg m^{-3}]$ ρ gas density $[kg m^{-3}]$ ρ_l liquid dens	Y_i	
<i>m</i> mass evaporation rate $[kg m^{-3} s^{-1}]$ k_c mass transfer coefficient $[ms^{-1}]$ $Y_{f,s}$ mass fraction of sodium at the pool surface $[-]$ $Y_{f,\infty}$ mass fraction of sodium dioxide $[-]$ V_{0_2} mass fraction of sodium dioxide $[-]$ V_{0_2} mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Pr Prandtl number $[-]$ Pr Prandtl number $[-]$ n constant $[-]$ M_f molecular weight of fuel species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ T_i liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ c_p heat capacity of liquid sodium $[] kg^{-1} K^{-1}]$ h heat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[] kg^{-2}]$ Pr_t turbulent Prandtl number $[-]$ $P_{f,s}$ saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ c_2 constant $[-]$ f_v volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ϕ pressure $[Pa]$ ϕ s constant $[-]$ ρ gas density $[kg m^{-3}]$ ρ gas density $[kg m^{-3}]$ ρ_l liquid dens	h _i	
<i>m</i> mass evaporation rate $[kg m^{-3} s^{-1}]$ k_c mass transfer coefficient $[ms^{-1}]$ $Y_{f,s}$ mass fraction of sodium at the pool surface $[-]$ $Y_{f,\infty}$ mass fraction of sodium dioxide $[-]$ V_{0_2} mass fraction of sodium dioxide $[-]$ V_{0_2} mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Pr Prandtl number $[-]$ Pr Prandtl number $[-]$ n constant $[-]$ M_f molecular weight of fuel species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ M_g molecular weight of gas species $[g mol^{-1}]$ T_i liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ c_p heat capacity of liquid sodium $[] kg^{-1} K^{-1}]$ h heat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[] kg^{-2}]$ Pr_t turbulent Prandtl number $[-]$ $P_{f,s}$ saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ c_2 constant $[-]$ f_v volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ϕ pressure $[Pa]$ ϕ s constant $[-]$ ρ gas density $[kg m^{-3}]$ ρ gas density $[kg m^{-3}]$ ρ_l liquid dens	\vec{C}_{ni}	
k_c mass transfer coefficient $[ms^{-1}]$ $Y_{f,s}$ mass fraction of sodium at the pool surface $[-]$ $Y_{f,so}$ mass fraction of sodium at the ambient $[-]$ Y_{O_2} mass fraction of sodium dioxide $[-]$ Le Lewis number $[-]$ Pr Prandtl number $[-]$ Pr Prandtl number $[-]$ R_c Sc Schmidt number $[-]$ M_f molecular weight of fuel species $[g mol^{-1}]$ M_g molecular weight of fue species $[g mol^{-1}]$ M_g molecular weight of fue species $[g mol^{-1}]$ T_s surface temperature of the pool $[K]$ T_1 liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ c_p heat capacity of liquid sodium $[] kg^{-1} K^{-1}]$ h heat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[] kg^{-2}]$ Pr_t turbulent Prandtl number $[-]$ P_s saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ ζ_2 constant $[\cdot]$ B_s constant $[\cdot]$ f_v volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ψ Pentagamma function $[\cdot]$ λ_m reference wavelength $[m]$ ρ_a aerosol density $[kg m^{-3}]$ ρ_l liquid density $[kg m^{-3}]$ ρ_l liquid density $[kg m^{-3}]$	<i>m</i>	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$ \begin{array}{ll} \dot{Y}_{f,\infty} & \text{mass fraction of sodium at the ambient } [-] \\ Y_{O_2} & \text{mass fraction of oxygen } [-] \\ Y_{Na_2O_2} & \text{mass fraction of sodium dioxide } [-] \\ Le & Lewis number [-] \\ Pr & Prandtl number [-] \\ Sc & Schmidt number [-] \\ n & \text{constant } [-] \\ M_f & \text{molecular weight of fuel species } [g \text{mol}^{-1}] \\ M_g & \text{molecular weight of gas species } [g \text{mol}^{-1}] \\ T_i & \text{liquid temperature of the pool } [K] \\ T_i & \text{liquid temperature } [K] \\ Q_f & \text{total heat flux } [Wm^{-2}] \\ H_{fg} & \text{heat of evaporation } [J/kg] \\ T & \text{temperature } [K] \\ L & \text{equivalent thickness of gas } [K] \\ c_p & \text{heat capacity of liquid sodium } [J kg^{-1} K^{-1}] \\ h & \text{heat transfer coefficient } [Wm^{-2}] \\ H_i & \text{enthalpy of liquid } [J kg^{-2}] \\ Pr_t & \text{turbulent Prandtl number } [-] \\ P_{fs} & \text{saturation vapor pressure at pool surface } [Pa] \\ P & \text{pressure } [Pa] \\ c_2 & \text{constant } [\cdot] \\ f_{\nu} & \text{volume fraction of aerosols } [\cdot] \\ P & \text{pressure } [Pa] \\ \psi' & \text{Pentagamma function } [.] \\ \lambda_m & \text{reference wavelength } [m] \\ \rho_a & \text{aerosol density } [kg m^{-3}] \\ \rho_l & \text{liquid density } [kg m^{-3}] \\ \gamma & \text{oxidizer-fuel coupling function } [.] \\ \end{array}$	Yfs	
Y_{O_2} mass fraction of oxygen [-] $Y_{Na_2O_2}$ mass fraction of sodium dioxide [-] le Lewis number [-] Pr Prandtl number [-] Sc Schmidt number [-] n constant [-] M_f molecular weight of fuel species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] T_s surface temperature of the pool [K] T_l liquid temperature [K] Q_f total heat flux [Wm ⁻²] H_{fg} heat of evaporation [J/kg] T temperature [K] L equivalent thickness of gas [K] c_p heat capacity of liquid sodium [J kg ⁻¹ K ⁻¹] h heat transfer coefficient [Wm ⁻²] h_l enthalpy of liquid [J kg ⁻²] Pr_t turbulent Prandtl number [-] $P_{f,s}$ saturation vapor pressure at pool surface [Pa] P pressure [Pa] c_2 constant [·] f_{ν} volume fraction of aerosols [·] P pressure [Pa] ψ Pentagamma function [·] λ_m reference wavelength [m] ρ_a aerosol density [kg m ⁻³] σ_s scattering factor [·] ρ gas density [kg m ⁻³] ρ_l liquid density [kg m ⁻³] γ oxidizer-fuel coupling function [·]		
$Y_{Na_2O_2}$ mass fraction of sodium dioxide [-] le Lewis number [-] Pr Prandtl number [-] Sc Schmidt number [-] n constant [-] M_f molecular weight of fuel species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] M_g molecular weight of gas species [g mol ⁻¹] T_s surface temperature of the pool [K] T_1 liquid temperature [K] Q_f total heat flux [Wm ⁻²] H_{fg} heat of evaporation [J/kg] T temperature [K] L equivalent thickness of gas [K] c_p heat capacity of liquid sodium [J kg ⁻¹ K ⁻¹] h heat transfer coefficient [Wm ⁻²] h_l enthalpy of liquid [J kg ⁻²] Pr_t turbulent Prandtl number [-] $P_{f,s}$ saturation vapor pressure at pool surface [Pa] P pressure [Pa] c_2 constant [·] f_{ν} volume fraction of aerosols [·] P pressure [Pa] ψ Pentagamma function [·] λ_m reference wavelength [m] ρ_a aerosol density [kg m ⁻³] σ_s scattering factor [·] ρ gas density [kg m ⁻³] γ oxidizer-fuel coupling function [·]		
LeLewis number $[-]$ PrPrandtl number $[-]$ ScSchmidt number $[-]$ nconstant $[-]$ M_f molecular weight of fuel species $[g \mod^{-1}]$ M_g molecular weight of gas species $[g \mod^{-1}]$ T_s surface temperature of the pool $[K]$ T_l liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ Ttemperature $[K]$ Lequivalent thickness of gas $[K]$ c_p heat capacity of liquid sodium $[J kg^{-1} K^{-1}]$ hheat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[J kg^{-2}]$ Pr_t turbulent Prandtl number $[-]$ $P_{f,s}$ saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ c_2 constant $[\cdot]$ B_s constant $[\cdot]$ f_{ψ} volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ψ Pentagamma function $[\cdot]$ λ_m reference wavelength $[m]$ ρ_a aerosol density $[kg m^{-3}]$ σ_s scattering factor $[\cdot]$ ρ gas density $[kg m^{-3}]$ γ oxidizer-fuel coupling function $[\cdot]$		
Pr Prandtl number [-] Sc Schmidt number [-] n constant [-] M_f molecular weight of fuel species $[g \mod^{-1}]$ M_g molecular weight of gas species $[g \mod^{-1}]$ T_s surface temperature of the pool $[K]$ T_l liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ c_p heat capacity of liquid sodium $[J kg^{-1} K^{-1}]$ h heat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[J kg^{-2}]$ Pr_t turbulent Prandtl number $[-]$ $P_{f,s}$ saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ c_2 constant $[\cdot]$ B_s constant $[\cdot]$ f_{V} volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ψ Pentagamma function $[\cdot]$ λ_m reference wavelength $[m]$ ρ_a aerosol density $[kg m^{-3}]$ σ_s scattering factor $[\cdot]$ ρ gas density $[kg m^{-3}]$ γ oxidizer-fuel coupling function $[\cdot]$		
ScSchmidt number $[-]$ nconstant $[-]$ M_f molecular weight of fuel species $[g \mod^{-1}]$ M_g molecular weight of gas species $[g \mod^{-1}]$ T_s surface temperature of the pool $[K]$ T_l liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ c_p heat capacity of liquid sodium $[J kg^{-1} K^{-1}]$ h heat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[J kg^{-2}]$ Pr_t turbulent Prandtl number $[-]$ $P_{f,s}$ saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ c_2 constant $[\cdot]$ B_s constant $[\cdot]$ f_{ψ} volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ψ Pentagamma function $[\cdot]$ λ_m reference wavelength $[m]$ ρ_a aerosol density $[kg m^{-3}]$ σ_s scattering factor $[\cdot]$ ρ gas density $[kg m^{-3}]$ γ oxidizer-fuel coupling function $[\cdot]$		
nconstant $[-]$ M_f molecular weight of fuel species $[g \mod^{-1}]$ M_g molecular weight of gas species $[g \mod^{-1}]$ T_s surface temperature of the pool $[K]$ T_l liquid temperature $[K]$ Q_f total heat flux $[Wm^{-2}]$ H_{fg} heat of evaporation $[J/kg]$ T temperature $[K]$ L equivalent thickness of gas $[K]$ c_p heat capacity of liquid sodium $[J kg^{-1} K^{-1}]$ h heat transfer coefficient $[Wm^{-2}]$ h_l enthalpy of liquid $[J kg^{-2}]$ Pr_t turbulent Prandtl number $[-]$ $P_{f,s}$ saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ c_2 constant $[\cdot]$ B_s constant $[\cdot]$ $f_{i'}$ volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ψ Pentagamma function $[\cdot]$ λ_m reference wavelength $[m]$ ρ_a aerosol density $[kg m^{-3}]$ σ_s scattering factor $[\cdot]$ ρ gas density $[kg m^{-3}]$ γ oxidizer-fuel coupling function $[\cdot]$		
$ \begin{array}{ll} M_f & \text{molecular weight of fuel species } [g \mathrm{mol}^{-1}] \\ M_g & \text{molecular weight of gas species } [g \mathrm{mol}^{-1}] \\ T_s & \text{surface temperature of the pool } [K] \\ T_l & \text{liquid temperature } [K] \\ Q_f & \text{total heat flux } [Wm^{-2}] \\ H_{fg} & \text{heat of evaporation } [J/kg] \\ T & \text{temperature } [K] \\ L & \text{equivalent thickness of gas } [K] \\ c_p & \text{heat capacity of liquid sodium } [J kg^{-1} K^{-1}] \\ h & \text{heat transfer coefficient } [Wm^{-2}] \\ h_l & \text{enthalpy of liquid } [J kg^{-2}] \\ Pr_t & \text{turbulent Prandtl number } [-] \\ P_{f,s} & \text{saturation vapor pressure at pool surface } [Pa] \\ P & \text{pressure } [Pa] \\ c_2 & \text{constant } [\cdot] \\ f_{\nu} & \text{volume fraction of aerosols } [\cdot] \\ P & \text{pressure } [Pa] \\ \psi & \text{Pentagamma function } [\cdot] \\ \lambda_m & \text{reference wavelength } [m] \\ \rho_a & \text{aerosol density } [kg m^{-3}] \\ \sigma_s & \text{scattering factor } [\cdot] \\ \rho & \text{gas density } [kg m^{-3}] \\ \gamma & \text{oxidizer-fuel coupling function } [\cdot] \\ \end{array}$		
$ \begin{array}{ll} \dot{M_g} & \text{molecular weight of gas species } [g \mathrm{mol}^{-1}] \\ T_s & \text{surface temperature of the pool } [K] \\ T_l & \text{liquid temperature } [K] \\ Q_f & \text{total heat flux } [Wm^{-2}] \\ H_{fg} & \text{heat of evaporation } [J/kg] \\ T & \text{temperature } [K] \\ L & \text{equivalent thickness of gas } [K] \\ c_p & \text{heat capacity of liquid sodium } [J kg^{-1} K^{-1}] \\ h & \text{heat transfer coefficient } [Wm^{-2}] \\ h_l & \text{enthalpy of liquid } [J kg^{-2}] \\ Pr_t & \text{turbulent Prandtl number } [-] \\ P_{f,s} & \text{saturation vapor pressure at pool surface } [Pa] \\ P & \text{pressure } [Pa] \\ c_2 & \text{constant } [\cdot] \\ B_s & \text{constant } [\cdot] \\ f_{\nu} & \text{volume fraction of aerosols } [\cdot] \\ P & \text{pressure } [Pa] \\ \psi & \text{Pentagamma function } [\cdot] \\ \lambda_m & \text{reference wavelength } [m] \\ \rho_a & \text{aerosol density } [kg m^{-3}] \\ \sigma_s & \text{scattering factor } [\cdot] \\ \rho & \text{gas density } [kg m^{-3}] \\ \gamma & \text{oxidizer-fuel coupling function } [\cdot] \\ \end{array} $		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-	
$ \begin{array}{ll} \dot{H_{fg}} & \text{heat of evaporation [J/kg]} \\ T & \text{temperature [K]} \\ L & \text{equivalent thickness of gas [K]} \\ c_p & \text{heat capacity of liquid sodium [J kg^{-1} K^{-1}]} \\ h & \text{heat transfer coefficient [Wm^{-2}]} \\ h_l & \text{enthalpy of liquid [J kg^{-2}]} \\ Pr_t & \text{turbulent Prandtl number [-]} \\ P_{f,s} & \text{saturation vapor pressure at pool surface [Pa]} \\ P & \text{pressure [Pa]} \\ c_2 & \text{constant [·]} \\ B_s & \text{constant [·]} \\ f_{\nu} & \text{volume fraction of aerosols [·]} \\ P & \text{pressure [Pa]} \\ \psi & \text{Pentagamma function [·]} \\ \lambda_m & \text{reference wavelength [m]} \\ \rho_a & \text{aerosol density [kg m^{-3}]} \\ \sigma_s & \text{scattering factor [·]} \\ \rho & \text{gas density [kg m^{-3}]} \\ \gamma & \text{oxidizer-fuel coupling function [·]} \\ \end{array} $		
Ttemperature [K]Lequivalent thickness of gas [K] c_p heat capacity of liquid sodium [Jkg ⁻¹ K ⁻¹]hheat transfer coefficient [Wm ⁻²] h_l enthalpy of liquid [Jkg ⁻²] Pr_t turbulent Prandtl number [-] $P_{f,s}$ saturation vapor pressure at pool surface [Pa] P pressure [Pa] c_2 constant [·] f_{ν} volume fraction of aerosols [·] P pressure [Pa] ψ Pentagamma function [·] λ_m reference wavelength [m] ρ_a aerosol density [kg m ⁻³] σ_s scattering factor [·] ρ gas density [kg m ⁻³] γ oxidizer-fuel coupling function [·]	Q_f	
$ \begin{array}{ll} L & \mbox{equivalent thickness of gas [K]} \\ c_p & \mbox{heat capacity of liquid sodium [J kg^{-1} K^{-1}]} \\ h & \mbox{heat transfer coefficient [Wm^{-2}]} \\ h_l & \mbox{entropy of liquid [J kg^{-2}]} \\ Pr_t & \mbox{turbulent Prandtl number [-]} \\ P_{f,s} & \mbox{saturation vapor pressure at pool surface [Pa]} \\ P & \mbox{pressure [Pa]} \\ c_2 & \mbox{constant [·]} \\ B_s & \mbox{constant [·]} \\ f_{\nu} & \mbox{volume fraction of aerosols [·]} \\ P & \mbox{pressure [Pa]} \\ \psi & \mbox{Pentagamma function [·]} \\ \lambda_m & \mbox{reference wavelength [m]} \\ \rho_a & \mbox{aerosol density [kg m^{-3}]} \\ \sigma_s & \mbox{scattering factor [·]} \\ \rho & \mbox{gas density [kg m^{-3}]} \\ \gamma & \mbox{oxidizer-fuel coupling function [·]} \\ \end{array} $	Н _{fg}	
$\begin{array}{ll} c_p & \text{heat capacity of liquid sodium } [J \mathrm{kg}^{-1} \mathrm{K}^{-1}] \\ h & \text{heat transfer coefficient } [Wm^{-2}] \\ h_l & \text{enthalpy of liquid } [J \mathrm{kg}^{-2}] \\ Pr_t & \text{turbulent Prandtl number } [-] \\ P_{f,s} & \text{saturation vapor pressure at pool surface } [Pa] \\ P & \text{pressure } [Pa] \\ c_2 & \text{constant } [\cdot] \\ B_s & \text{constant } [\cdot] \\ f_{\nu} & \text{volume fraction of aerosols } [\cdot] \\ P & \text{pressure } [Pa] \\ \psi & \text{Pentagamma function } [\cdot] \\ \lambda_m & \text{reference wavelength } [m] \\ \rho_a & \text{aerosol density } [\mathrm{kg} \mathrm{m}^{-3}] \\ \sigma_s & \text{scattering factor } [\cdot] \\ \rho & \text{gas density } [\mathrm{kg} \mathrm{m}^{-3}] \\ \gamma & \text{oxidizer-fuel coupling function } [\cdot] \end{array}$		
hheat transfer coefficient $[Wm^{-2}]$ h_lenthalpy of liquid $[Jkg^{-2}]$ Pr_t turbulent Prandtl number $[-]$ $P_{f,s}$ saturation vapor pressure at pool surface $[Pa]$ P pressure $[Pa]$ c_2 constant $[\cdot]$ B_s constant $[\cdot]$ f_v volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ψ Pentagamma function $[\cdot]$ λ_m reference wavelength $[m]$ ρ_a aerosol density $[kgm^{-3}]$ σ_s scattering factor $[\cdot]$ ρ gas density $[kgm^{-3}]$ ρ_l liquid density $[kgm^{-3}]$ γ oxidizer-fuel coupling function $[\cdot]$		equivalent thickness of gas [K]
$ \begin{array}{ll} h_l & \mbox{entropy} \ \mbox{entropy} \ \mbox{flip} \ \mbox{entropy} \ entro$		
$\begin{array}{ll} Pr_t & \mbox{turbulent Prandtl number } [-] \\ P_{f,s} & \mbox{saturation vapor pressure at pool surface } [Pa] \\ P & \mbox{pressure } [Pa] \\ c_2 & \mbox{constant } [\cdot] \\ B_s & \mbox{constant } [\cdot] \\ f_v & \mbox{volume fraction of aerosols } [\cdot] \\ P & \mbox{pressure } [Pa] \\ \psi & \mbox{Pentagamma function } [\cdot] \\ \lambda_m & \mbox{reference wavelength } [m] \\ \rho_a & \mbox{aerosol density } [kg m^{-3}] \\ \sigma_s & \mbox{scattering factor } [\cdot] \\ \rho & \mbox{gas density } [kg m^{-3}] \\ \rho_l & \mbox{liquid density } [kg m^{-3}] \\ \gamma & \mbox{oxidizer-fuel coupling function } [\cdot] \end{array}$		
$\begin{array}{ll} P_{f,s} & \text{saturation vapor pressure at pool surface [Pa]} \\ P & \text{pressure [Pa]} \\ c_2 & \text{constant [}\cdot\text{]} \\ B_s & \text{constant [}\cdot\text{]} \\ f_v & \text{volume fraction of aerosols [}\cdot\text{]} \\ P & \text{pressure [Pa]} \\ \psi & \text{Pentagamma function [}\cdot\text{]} \\ \lambda_m & \text{reference wavelength [m]} \\ \rho_a & \text{aerosol density [kg m^{-3}]} \\ \sigma_s & \text{scattering factor [}\cdot\text{]} \\ \rho & \text{gas density [kg m^{-3}]} \\ \rho_l & \text{liquid density [kg m^{-3}]} \\ \gamma & \text{oxidizer-fuel coupling function [}\cdot\text{]} \end{array}$	•	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	-	
c_2 constant [·] B_s constant [·] f_{ν} volume fraction of aerosols [·] P pressure [Pa] ψ Pentagamma function [·] λ_m reference wavelength [m] ρ_a aerosol density [kg m ⁻³] σ_s scattering factor [·] ρ gas density [kg m ⁻³] ρ_l liquid density [kg m ⁻³] γ oxidizer-fuel coupling function [·]	$P_{f,s}$	
B_s constant $[\cdot]$ f_{ν} volume fraction of aerosols $[\cdot]$ P pressure $[Pa]$ ψ Pentagamma function $[\cdot]$ λ_m reference wavelength $[m]$ ρ_a aerosol density $[kg m^{-3}]$ σ_s scattering factor $[\cdot]$ ρ gas density $[kg m^{-3}]$ ρ_l liquid density $[kg m^{-3}]$ γ oxidizer-fuel coupling function $[\cdot]$	Р	
$ \begin{array}{ll} f_{\nu} & \text{volume fraction of aerosols } [\cdot] \\ P & \text{pressure } [Pa] \\ \psi & \text{Pentagamma function } [\cdot] \\ \lambda_m & \text{reference wavelength } [m] \\ \rho_a & \text{aerosol density } [kg m^{-3}] \\ \sigma_s & \text{scattering factor } [\cdot] \\ \rho & \text{gas density } [kg m^{-3}] \\ \rho_l & \text{liquid density } [kg m^{-3}] \\ \gamma & \text{oxidizer-fuel coupling function } [\cdot] \end{array} $	<i>c</i> ₂	constant [·]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Bs	constant [·]
$ \begin{array}{ll} \psi & \text{Pentagamma function [.]} \\ \lambda_m & \text{reference wavelength [m]} \\ \rho_a & \text{aerosol density [kg m^{-3}]} \\ \sigma_s & \text{scattering factor [.]} \\ \rho & \text{gas density [kg m^{-3}]} \\ \rho_l & \text{liquid density [kg m^{-3}]} \\ \gamma & \text{oxidizer-fuel coupling function [.]} \end{array} $	f_{v}	volume fraction of aerosols [·]
$\begin{array}{ll} \lambda_m & \text{reference wavelength [m]} \\ \rho_a & \text{aerosol density [kg m^{-3}]} \\ \sigma_s & \text{scattering factor [} \\ \rho & \text{gas density [kg m^{-3}]} \\ \rho_l & \text{liquid density [kg m^{-3}]} \\ \gamma & \text{oxidizer-fuel coupling function [} \\ \end{array}$	Р	pressure [Pa]
$\begin{array}{ll} \rho_{a} & \text{aerosol density } [\text{kg m}^{-3}] \\ \sigma_{s} & \text{scattering factor } [\cdot] \\ \rho & \text{gas density } [\text{kg m}^{-3}] \\ \rho_{l} & \text{liquid density } [\text{kg m}^{-3}] \\ \gamma & \text{oxidizer-fuel coupling function } [\cdot] \end{array}$	ψ	Pentagamma function [.]
$\begin{array}{ll} \rho_{a} & \text{aerosol density } [\text{kg m}^{-3}] \\ \sigma_{s} & \text{scattering factor } [\cdot] \\ \rho & \text{gas density } [\text{kg m}^{-3}] \\ \rho_{l} & \text{liquid density } [\text{kg m}^{-3}] \\ \gamma & \text{oxidizer-fuel coupling function } [\cdot] \end{array}$	λ_m	reference wavelength [m]
$ \begin{array}{ll} \sigma_s & \text{scattering factor [}\cdot] \\ \rho & \text{gas density [kg m^{-3}]} \\ \rho_l & \text{liquid density [kg m^{-3}]} \\ \gamma & \text{oxidizer-fuel coupling function [}\cdot] \end{array} $	ρ_a	
$ρ$ gas density [kg m^{-3}] $ρ_l$ liquid density [kg m^{-3}] $γ$ oxidizer-fuel coupling function [·]	-	
$ \begin{array}{ll} \rho_l & \text{liquid density [kg m^{-3}]} \\ \gamma & \text{oxidizer-fuel coupling function [} \end{array} $		
γ oxidizer-fuel coupling function [·]	•	
· · · ·		
		-

- 1		
	β	β -PDF parameter [\cdot]
	μ_t	turbulent viscosity [kg m ⁻¹ s ⁻¹]
	$ au_{ij}$	viscous force tensor [Nm ⁻²]
	σ_t	turbulent Schmidt number [·]
	ε	turbulent dissipation rate [m ² s ⁻³]
	k	turbulent kinetic energy [m ² s ⁻²]
	λ	thermal conductivity of sodium [Wm ⁻¹ K ⁻¹]
	μ	laminar viscosity [kg m ⁻¹ s ⁻¹]
	ε_i	aerosol emissivity [·]

leading to a huge amount of sodium leaking on to the floor. The leaked sodium reacted with air thereby increasing the temperature, which resulted in melting of steel structures. The sodium reaction also produced caustic fumes because of aerosol formation. Since the sodium fire accident, Monju was shut down for about 15 years (IAEA-Tecdoc, 2007).

Several mitigation systems have been proposed in literature for example a Karlsruhe tray (Huber et al., 1975) and a leak collection tray (Diwakar et al., 2008, 2011) to catch leaking sodium and avoid its contact with air or water. Recently, a method for a suppression of sodium fires with liquid nitrogen is also proposed (An et al., 2013). However, further work on optimization of the design of such mitigation systems is necessary before these systems can be used in a sodium fast reactor.

To summarize, sodium leakages which lead to sodium reactions are dangerous for the safety of the reactor. Hence, sodium reactions must be avoided and therefore detailed experimental and numerical investigations of sodium reactions are important. In fact, understanding of sodium reactions with air and water is essential to develop computer codes, which can be used for the safety analysis of the reactor and to design mitigation systems.

Methods based on Computational Fluid Dynamics (CFD) are increasingly being used in modeling of sodium combustion. Methods based on CFD not only resolve all the spatial scales, but also simulate the physical processes governing a sodium pool combustion, e.g., turbulence combustion, turbulence-chemistry interaction, heat transfer, mass transfer, buoyancy, radiation and aerosol transport.

At NRG, our main focus is to develop a numerical tool based on CFD to simulate simultaneous sodium spray and pool combustion. We do this in three steps. In the first step, we develop and validate a code to simulate sodium spray combustion is described in Sathiah and Roelofs (2014). In the second step, we develop and validate a code to simulate sodium pool combustion. In the third step, we combine these codes to simulate simultaneous sodium spray and pool combustion and demonstrate the feasibility of our code. The second step is the major subject of this paper. Additionally, in the last section, we will demonstrate the feasibility of the third step i.e. the evaluation of the consequences of combined sodium spray and pool combustion in realistic situations.

In the past, both experimental and numerical studies on liquid sodium pool combustion have been reported in literature.

The SOFIRE code developed by Bergiger (1973) is based on a surface combustion model, it assumes that the flame temperature is the same as the liquid surface temperature and neglects the formation of a thin liquid vapor. Since the model neglects the vapor phase combustion, the flame temperature is underestimated, which leads to underestimation in the mean burning rate.

Sagae and Suzuoki (1985) proposed an analytical combustion model for sodium pool combustion. They claimed that sodium pool combustion essentially takes place in the vapor phase and the Download English Version:

https://daneshyari.com/en/article/6762095

Download Persian Version:

https://daneshyari.com/article/6762095

Daneshyari.com