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h  i g  h  l  i  g  h  t  s

• Best  estimate  codes  simulation  needs  uncertainty  quantification.
• The  output  variables  can  present  multimodal  probability  distributions.
• The  analysis  of  multimodal  distribution  is performed  using  finite  mixture  models.
• Two  methods  to reconstruct  output  variable  probability  distribution  are  used.
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a  b  s  t  r  a  c  t

Nuclear  Power  Plant  safety  analysis  is  mainly  based  on the  use  of best  estimate  (BE)  codes  that  predict
the  plant  behavior  under  normal  or accidental  conditions.  As the  BE  codes  introduce  uncertainties  due
to  uncertainty  in input  parameters  and  modeling,  it is necessary  to perform  uncertainty  assessment
(UA),  and  eventually  sensitivity  analysis  (SA),  of the  results  obtained.  These  analyses  are part  of the
appropriate  treatment  of uncertainties  imposed  by current  regulation  based  on  the adoption  of  the  best
estimate  plus uncertainty  (BEPU)  approach.  The  most popular  approach  for uncertainty  assessment,  based
on Wilks’  method,  obtains  a tolerance/confidence  interval,  but it  does  not  completely  characterize  the
output  variable  behavior,  which  is  required  for an  extended  UA  and  SA. However,  the development  of
standard  UA  and SA  impose  high  computational  cost  due  to the large number  of  simulations  needed.  In
order to  obtain  more  information  about  the  output  variable  and,  at the  same  time,  to  keep  computational
cost  as  low  as  possible,  there  has  been  a recent  shift  toward  developing  metamodels  (model  of model),  or
surrogate  models,  that approximate  or emulate  complex  computer  codes.  In this  way,  there  exist  different
techniques  to  reconstruct  the probability  distribution  using  the  information  provided  by a sample  of
values  as,  for example,  the  finite  mixture  models.  In this  paper,  the  Expectation  Maximization  and  the
k-means  algorithms  are  used  to obtain  a finite  mixture  model  that  reconstructs  the  output  variable
probability  distribution  from  data  obtained  with  RELAP-5  simulations.  Both  methodologies  have  been
applied  to  a separated  effects  experiment,  and  to  an  integral  effects  simulation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nuclear Power Plant safety analysis is mainly based on the use
of neutronic and thermal-hydraulic models to predict the plant
behavior under normal or accidental conditions. Thermal hydraulic
calculations can be performed using either conservative or best
estimate (BE) codes, providing this latter option more realistic
results. The general BE modeling methodology process comprises
different steps, from capturing reality to conceptual models to
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convert those models to computerized BE codes. In this process
there are always numerous simplifications, model approximations,
round-off errors, numerical techniques, and so on, which cause
uncertainties in the calculation (Pourgol-Mohammad, 2009). Thus,
the uncertainty of the results obtained with the code (code output),
which mainly depends on the uncertainty of code inputs and the
modeling itself, has to be quantified in order to give credit to the
predictions obtained (Pourgol-Mohammad et al., 2011).

From the last decade, the regulatory bodies allow the use of
thermal-hydraulic BE simulation codes to guarantee the safe oper-
ation of nuclear installations, but requiring, at the same time, an
appropriate treatment of uncertainties (Boyack et al., 1990; Wilson
et al., 1990; Wulf et al., 1990). The treatment of uncertainties should
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include not only uncertainty quantification but also uncertainty
control and reduction. The plant simulations undertaken using best
estimate codes combined with uncertainty analysis is known as
best estimate Plus Uncertainty (BEPU) approach (de Crécy et al.,
2008).

In the process of thermal hydraulic modeling using BE codes
the initial plant state is represented by the initial and boundary
conditions of the plant model, which are input variables in the BE
simulation. In many cases their values are unkown or uncertain,
an such uncertainty is transmitted through the code to the output
variable of interest. The uncetainty analysis (UA) using BE codes
may  require a large number of simulations, depending on the UA
approach adopted, to produce a sample of the output variable what
results in a large computational cost.

In the literature, there exist different approaches to quantify
uncertainty in BE codes. For example, in Cacuci and Ionescu-Bujor
(2000a,b) a deterministic approach is followed using the adjoint
sensitivity analysis method for RELAP code. This approach needs to
implement the uncertainty quantification method in a new code,
which has to be coupled with the thermal-hydraulic code. This is
known as an intrusive method as the original thermal hydraulic
code has to be modified. But the most popular approaches to
quantify code uncertainty are the non intrusive methods. Such
approaches use the thermal-hydraulic code to produce output vari-
ables linked to the input variables (Guba et al., 2003). That is, given
and input variable vector, �x, the computer code transforms it into
a vector �y of output variables,

�y(t) = f (�x, t). (1)

In practical, this link is very complex but it is assumed
to be deterministic, that is, once the input variables are fixed
the same output is obtained from the code within the com-
putation accuracy of each run. Some of the non intrusive
methodologies developed to quantify best estimate codes uncer-
tainty are the CSAU (Boyack et al., 1990; Wilson et al., 1990;
Wulf et al., 1990), the GRS methodologies (Glaeser et al., 1994)
ASTRUM and IMTHUA (Pourgol-Mohammad, 2009). Reference
Pourgol-Mohammad (2009) provides a detailed comparison of the
uncertainty methodologies developed, and applied to the thermal
hydraulic calculations. In these methodologies, it is assumed that
the input variables are uncertain, and follow a statistical distribu-
tion. In this way, fixing the time of the transient, N random samples
of an output variable are obtained, which are due to varied input
parameter values and computer code model parameters.

An approach for performing UA of thermal-hydraulic BE code
results, which has been accepted by regulatory authorities to eval-
uate the safety of a nuclear plant for selected accident scenarios
(e.g. LOCA scenarios), consists of the use BE code results coupled
with order statistics to determine a one-side tolerance limit or an
uncertainty interval in order to be compared with an acceptance
limit given by regulation (NRC, 1989). Thus, uncertainty in the out-
put variables can be quantified by obtaining a tolerance/confidence
interval, making use of the advantage of order statistics (Guba et al.,
2003). Thus, assuming there is one output variable, y, with a prob-
ability distribution g(y). If we carry on N runs with varying inputs,
we obtain a sample {y1, y2, . . .,  yN} of the output variable y. The
usual approach is to construct two random functions L = L(y1, y2,
. . .,  yN) and U = U(y1, y2, . . .,  yN), called tolerance limits, such that

P

{∫ U

L

g(y)dy > �

}
= ˇ, (2)

where∫ U

L

g(y)dy = A(y1, y2, . . . yN), (3)

is a random variable, called probability content, which measures
the portion of the distribution included in the random interval [L,
U]. Probability  ̌ is the confidence level, and � is a non-negative real
number not grater that 1. It is desirable to have values of  ̌ and � as
large as possible inside the interval [0, 1]. Having fixed  ̌ and � , it
becomes possible to determine the number of runs N necessary to
determine an appropriate interval [L, U]. The first works that dis-
cussed the problem of setting tolerance/confidence intervals based
on samples where developed by Wilks (1941), and they are the basis
of uncertainty methodologies for quantifying best estimate codes
uncertainty (Glaeser et al., 1994; Guba et al., 2003). This approach
has the advantage that the number of runs, N, necessary to deter-
mine the tolerance limits, is much lower than the runs necessary
in a Monte Carlo approach.

However, the information provided by the tolerance limits
methodology does not completely characterize the output variable
behavior. In addition, it tends to provide conservative estimates
of the tolerance limits when the statistic of first order is adopted,
which is the usual case as this imposes the lowest N. More pre-
cise results can be obtained adopting statistics of order two, three
and higher, but at the expenses of increasing N and therefore the
computational cost (Hong et al., 2011).

By increasing N one can obtain more information about the
output variable of the BE code, even the shape of its probability
distribution function. For example, in Chang et al. (2004), to ana-
lyze the pressurized thermal shock a thermal-hydraulic uncertainty
analysis is performed reconstructing the probability density func-
tion and the cumulative distribution function of the downcomer
temperature, using RELAP-5 best estimate code. The advantage of
this UA approach is that it allows obtaining a more precise esti-
mate of the tolerance limits and at the same time provides the
information required to perform Standard Sensitivity Analysis (SA)
(Langewisch, 2010). SA refers to a collection of tools whose aim is to
elucidate the dependency of the model output on the set of model
inputs, in particular but not only, to assess how the uncertainty in
output depends on the uncertainty in inputs. There are different SA
methods (Borgonovo, 2006; Saltelli et al., 2008) that provide a bet-
ter understanding of how various parameters affect the response
of a system.

The predominant limiting factor in most of the UA and SA meth-
ods referred is the very large computational burden due to the
large number of simulations required. As a result, there has been
a recent shift in research efforts toward developing methods for
approximating, or emulating, complex computer models. These
approximate models are referred to as metamodels, or surrogate
models. In brief, a metamodel is a model of a model, i.e. a meta-
model is a simplified model that is capable of approximating the
output from the underlying computer model. Once constructed,
the metamodel serves as a fast-running surrogate to the com-
puter model and is used to quickly predict outputs from a Monte
Carlo simulation. Thus, the UA and SA are performed through the
approximate model, thereby circumventing the initial computa-
tional burden (Strolie et al., 2009). For example Neural networks
are used to estimate safety margins on the maximum fuel cladding
temperature reached during a complete group distribution header
blockage scenario in a RBMK-1500 nuclear reactor (Secchi et al.,
2008). This approach has the advantage of its fast performance but
the results obtained can be poor depending on the output variable
behavior (Zio, 2006; Cadini et al., 2008).

On the other hand, polynomial chaos expansion methods have
been recently used to reconstruct the probability distribution and
to estimate its parameters, as a lower number of runs are needed
compared with Monte Carlo approaches (Sundret, 2008; Eaton and
Williams, 2010; Gilli et al., 2012).

So assuming that the input variables are random and follow a
certain probability distribution, if its variance or range of variation
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