Accepted Manuscript

Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis

Melisa Bertero, Juan Rafael García, Marisa Falco, Ulises Sedran

PII: S0960-1481(18)30883-8

DOI: 10.1016/j.renene.2018.07.086

Reference: RENE 10360


To appear in: Renewable Energy

Received Date: 09 March 2018

Accepted Date: 18 July 2018

Please cite this article as: Melisa Bertero, Juan Rafael García, Marisa Falco, Ulises Sedran, Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.07.086

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis
2	
3	Melisa Bertero, Juan Rafael García, Marisa Falco, Ulises Sedran*
4	
5	Instituto de Investigaciones en Catálisis y Petroquímica "José Miguel Parera"
6	INCAPE (UNL – CONICET).
7	Colectora Ruta Nac. Nº 168 Km 0 (3000) Santa Fe, Argentina
8	* usedran@fiq.unl.edu.ar
9	
10	
11	Abstract
12	
13	A commercial equilibrium FCC catalyst of the octane-barrel type was subjected to
14	lixiviation treatments with both acidic (HNO ₃) and basic (NaOH) solutions in order to
15	modify its textural and acidic properties. The alkaline lixiviation doubled the mesopore
16	volume in the commercial catalyst, while the acidic treatment increased the
17	concentration of crystalline component in the catalyst. The catalytic performances of the
18	parent and modified catalysts in the immediate conversion of vapors from pine sawdust
19	fast pyrolysis were evaluated in a fixed bed reactor at 550 °C using mass catalyst to bio-
20	oil ratios from 3 to 8. The modified catalysts both produced more hydrocarbons and less
21	coke than the parent commercial catalyst. In turn, comparing the modified samples, the
22	one subjected to alkali treatment was more effective in deoxygenating the pyrolysis
23	vapors, resulting in higher hydrocarbon yields (up to 13.2 %) and lower coke yields
24	than the acid modified catalyst, a fact assigned to the higher mesoporosity which
25	improves the diffusion transport of bulky coke precursor molecules. The acid modified
26	catalyst allowed a higher extension of the reaction pathway, the selectivity to aromatic
27	hydrocarbon products being much higher (up to 95.5 % of hydrocarbons in the gasoline
28	boiling range).
29	
30	Keywords: bio-oil, tar, FCC, lixiviation, Y zeolite

Download English Version:

https://daneshyari.com/en/article/6763547

Download Persian Version:

https://daneshyari.com/article/6763547

<u>Daneshyari.com</u>