Accepted Manuscript

Enzymatic Hydrolysis at High Lignocellulosic Content: Optimization of The Mixing System Geometry and of A Fed-Batch Strategy To Increase Glucose Concentration

Federico Battista, Mélanie Gomez Almendros, Romain Rousset, Pierre-Antoine Bouillon

PII: S0960-1481(18)30835-8

DOI: 10.1016/j.renene.2018.07.038

Reference: RENE 10312

To appear in: Renewable Energy

Received Date: 20 November 2017

Accepted Date: 08 July 2018

Please cite this article as: Federico Battista, Mélanie Gomez Almendros, Romain Rousset, Pierre-Antoine Bouillon, Enzymatic Hydrolysis at High Lignocellulosic Content: Optimization of The Mixing System Geometry and of A Fed-Batch Strategy To Increase Glucose Concentration, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.07.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Cellic CTec 2 enzymes

MORE COMPLEX IMPELLER

IBI

MAI

AI

PI

DHI

SMALL DIAMETER

BIG DIAMETER

Download English Version:

https://daneshyari.com/en/article/6763610

Download Persian Version:

https://daneshyari.com/article/6763610

<u>Daneshyari.com</u>