Accepted Manuscript

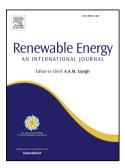
Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers

Tim Conroy, Maurice N. Collins, James Fisher, Ronan Grimes

PII: S0960-1481(18)30626-8

DOI: 10.1016/j.renene.2018.05.101

Reference: RENE 10153


To appear in: Renewable Energy

Received Date: 16 October 2017

Revised Date: 4 May 2018
Accepted Date: 29 May 2018

Please cite this article as: Conroy T, Collins MN, Fisher J, Grimes R, Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.05.101.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers

Tim Conroy^{a,*}, Maurice N. Collins^a, James Fisher^b, Ronan Grimes^a

^aStokes Laboratories, Bernal Institute, School of Engineering, University of Limerick, Ireland ^bVast Solar, Level 10, 17-19 Bridge St, Sydney, NSW, 2000, Australia

Abstract

7 Theoretical modelling techniques are used to compare the thermohydraulic performance and thermal storage char-

8 acteristics of molten salt, liquid sodium, and lead-bismuth in a CSP solar receiver concept. For molten salt, the

performance of a number of heat transfer augmentation techniques are also studied. Sodium and lead-bismuth both

yield excellent receiver thermal efficiency (max \sim 92%), when compared to molten salt (max \sim 90%), due to high

thermal conductivity values that lead to large heat transfer coefficients. A high pressure drop penalty for lead-bismuth

largely offsets its thermal performance gain over molten salt, however sodium retains its advantage as a receiver work-

ing fluid with a low pumping parasitic. The implementation of heat transfer enhancement techniques can significantly

improve the performance of a molten salt receiver when compared to smooth tube designs. The low specific heat

capacity and high unit cost of lead-bismuth is prohibitive towards its use as a storage medium in storage-integrated

6 plant designs, resulting in very high LCOE values. Sodium is the most economically feasible fluid for systems with

low storage (< 3 hour), however the low per-unit cost and high specific heat capacity of molten salt means that this is

the most effective working fluid in systems with larger storage requirements.

• Keywords: Concentrated solar power, solar receiver, molten salt, liquid metals, thermohydraulic performance,

thermal storage

1. Introduction

Concentrated solar power (CSP) is one of the fastest growing renewable energy technologies [1]. CSP has the potential to contribute towards a significant proportion of commercial electricity generation in years to come, with a 12% share in global electricity capacity forecast for 2050 [2]. A key advantage of CSP over other commercial renewable energy technologies lies in its ability to store thermal energy. Thermal energy storage (TES) allows for generation of electricity at times of little or no solar exposure, adding to the value and flexibility of CSP [3]. A critical challenge with CSP lies in its current high levelized cost of electricity (LCOE) relative to other commercial generation technologies, hindering its competitiveness in the energy market. Research and development into CSP is focussed on

Email address: timothy.conroy@ul.ie (Tim Conroy)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/6763924

Download Persian Version:

https://daneshyari.com/article/6763924

<u>Daneshyari.com</u>