Accepted Manuscript

Performance and economic evaluation of linear Fresnel reflector plant integrated direct contact membrane distillation system

Renewable Energy
AN INTERNATIONAL JOURNAL
Editorio-Chict Soteris Kalogirou

Mujeeb Igbal Soomro, Woo-Seung Kim

PII: S0960-1481(18)30640-2

DOI: 10.1016/j.renene.2018.06.010

Reference: RENE 10166

To appear in: Renewable Energy

Received Date: 11 January 2018

Accepted Date: 03 June 2018

Please cite this article as: Mujeeb Iqbal Soomro, Woo-Seung Kim, Performance and economic evaluation of linear Fresnel reflector plant integrated direct contact membrane distillation system, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.06.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Performance and economic evaluation of linear Fresnel reflector plant

integrated direct contact membrane distillation system

- 3 Mujeeb Iqbal Soomro^{a,b} and Woo-Seung Kim^{c,*}
- 4 a Department of Mechanical Design Engineering, Hanyang University, 55 Hanyangdaehak-
- 5 ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
- 6 (mujeebiqbal@hanyang.ac.kr)

1

2

- 7 b Department of Mechanical Engineering, Mehran University of Engineering & Technology,
- 8 SZAB Campus, Khairpur Mir's 66020, Sindh, Pakistan
- 9 ^c Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro,
- 10 Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
- *Corresponding author: Tel. +82-31-400-5248, Fax. +82-31-418-0153
- 12 E-mail address: wskim@hanyang.ac.kr

13 **ABSTRACT**

This paper presents an investigation of a 111 MWe linear Fresnel reflector (LFR) plant 14 integrated direct contact membrane distillation (DCMD) system. Both the technologies are 15 synergized by using seawater as cooling fluid in the condenser, and then utilizing heated 16 seawater from the condenser into the DCMD unit. The performance analysis of the LFR plant 17 and DCMD unit has been conducted mainly in regard to direct normal irradiance (DNI) and 18 19 feed water temperature, respectively. For the LFR plant, electricity generation increased with increasing DNI. The highest and the lowest energy production was 38.33 GWh and 14.08 GWh 20 21 in June and December, respectively. The real levelized cost of energy was found to be 0.34 ¢/kWh. For DCMD unit, the evaporation efficiency increased from 39.13% to 50.01% 22 corresponding to a feed temperature increase from 30 °C to 45 °C. The average freshwater 23 production capacity of the DCMD unit was found to be 31,844.6 L/day with a water production 24 25 cost \$0.425/m³. The investigations revealed that the performance of the proposed system is

Download English Version:

https://daneshyari.com/en/article/6763965

Download Persian Version:

https://daneshyari.com/article/6763965

<u>Daneshyari.com</u>