Accepted Manuscript

Wave energy Distribution along the Portuguese continental coast based on A thirty three years hindcast

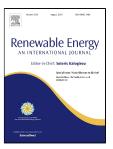
Dina Silva, Paulo Martinho, C.Guedes Soares

PII: S0960-1481(18)30558-5

DOI: 10.1016/j.renene.2018.05.037

Reference: RENE 10089

To appear in: Renewable Energy


Received Date: 25 January 2017

Revised Date: 07 April 2018

Accepted Date: 07 May 2018

Please cite this article as: Dina Silva, Paulo Martinho, C.Guedes Soares, Wave energy Distribution along the Portuguese continental coast based on A thirty three years hindcast, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.05.037

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

WAVE ENERGY DISTRIBUTION ALONG THE PORTUGUESE CONTINENTAL COAST BASED ON A THIRTY THREE YEARS HINDCAST

Dina Silva, Paulo Martinho and C. Guedes Soares*

Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Portugal

* Corresponding author e-mail: c.guedes.soares@centec.tecnico.ulisboa.pt

56 ABSTRACT

1

3

An assessment of wave power resource for Portugal continental coast is presented, 7 8 using thirty three years (1979 - 2012) of wave hindcast. The hindcast system is based in two spectral wave models, WWIII (WAVEWATCHIII) for the wave generation and 9 10 SWAN (Simulating WAves Nearshore) for wave transformation in coastal areas. To improve the SWAN model performance, six high resolution areas (Aguçadoura, 11 12 Figueira da Foz, São Pedro de Moel, Peniche, Cascais and Sines) were nested into one large area (Iberian coast). The assessment of wave power potential was done by 13 studying the spatial and temporal behaviour using average for different time scales 14 (monthly, seasonal, inter-annual and total time). Moreover, the wave climate 15 variability was determined through the calculation of the coefficient of variation, 16 seasonal variability index and monthly variability index. The results have shown that 17 in Portugal the wave energy is higher in the northwest, that the wave climate 18 variability has more impact in the south and that the month with the highest energy is 19 January. A bivariate distribution of significant wave height and energy period was also 20 21 determined, showing that the sea states where more wave power can be extracted are different than the ones that occur more frequently. 22

2324

Keywords: WAVEWATCH III; SWAN; wave power potential; seasonal energy; inter-annual energy

Download English Version:

https://daneshyari.com/en/article/6764198

Download Persian Version:

https://daneshyari.com/article/6764198

<u>Daneshyari.com</u>