Accepted Manuscript

High Performance of Maximum Power Point Tracking Using Ant Colony Algorithm in Wind Turbine

Renewable Energy
AN INTERNATIONAL JOURNAL
Editor in Chief. Soleris Kalegirea

Yacine Mokhtari, Djamila Rekioua

PII: S0960-1481(18)30360-4

DOI: 10.1016/j.renene.2018.03.049

Reference: RENE 9918

To appear in: Renewable Energy

Received Date: 09 May 2017

Revised Date: 04 March 2018

Accepted Date: 20 March 2018

Please cite this article as: Yacine Mokhtari, Djamila Rekioua, High Performance of Maximum Power Point Tracking Using Ant Colony Algorithm in Wind Turbine, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.03.049

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIP1

High Performance of Maximum Power Point Tracking Using Ant Colony Algorithm in Wind Turbine

Yacine MOKHTARI*, Djamila REKIOUA

Laboratoire de technologie industrielle et de l'information Faculté de technologie, Université de Béjaia, Algeria mokhtari.yacine2@gmail.com

6 7 8

9

10

11

12

13

14

15

16

1

2

3

4

5

Abstract: The growing interest in wind power as a source of electric power generation with minimal environmental impact and the advancement of aerodynamic designs, including wind turbines, have been the subject of numerous studies. When wind energy is integrated into the grid, this gives a significant amount of power added to the one produced by other types of plants. Several researchers aim to achieve high efficiency in wind power systems using maximum power point tracking (MPPT) of a variable-speed turbine but this technique is complicated because the different approximations that occur during the online calculations. The main objective of this work is to develop and improve a maximum power tracking control strategy using metaheuristic methods. Ant colony optimization (ACO) algorithm is used to determine the optimal PI controller parameters for speed control. The optimization of the speed gets a better value of power coefficient therefore the extracting power.

Keywords: MPPT, Wind turbine, Ant colony algorithm, Artificial Intelligence, Optimization, Wind Energy

17 18

19

20

Nomenclature

20	J	Viscous friction, N.III.s/rau
21	G	Gearbox
22	J	Inertia, Kg.m²
23	k	Number of ants
24	L_{m}	Magnetization inductance, H
25	L_s	Stator inductance, H
26	p	Number of pole pairs
27	P	Pair pole number
28	P_s, Q_s	Active and reactive stator power, W, VAR
29	P_N	Nominal power, W
30	P_t	Turbine power, W
31	R	Blade length, m
32	R_s	Stator resistance, Ω
33	$T_{d fig}$	Torque of the machine, N.m
34	T_{r}	Resistant Torque, N.m
35	$T_{turbine}$	Turbine torque, N.m

Power ratio

Viscous friction N m s/rad

Download English Version:

https://daneshyari.com/en/article/6764370

Download Persian Version:

https://daneshyari.com/article/6764370

<u>Daneshyari.com</u>