Accepted Manuscript

Microwave irradiation with dilute acid hydrolysis applied to enhance the Saccharification rate of water hyacinth (*Eichhornia crassipes*)

Renewable Energy
AN INTERNATIONAL JOURNAL
Editor in Chief: Seteris Kalagirea

Yuan-Chung Lin, Sumarlin Shangdiar, Shang-Cyuan Chen, Feng-Chih Chou, Yu-Chieh Lin, Che-An Cho

PII: S0960-1481(18)30265-9

DOI: 10.1016/j.renene.2018.02.113

Reference: RENE 9844

To appear in: Renewable Energy

Received Date: 02 June 2017

Revised Date: 25 December 2017

Accepted Date: 24 February 2018

Please cite this article as: Yuan-Chung Lin, Sumarlin Shangdiar, Shang-Cyuan Chen, Feng-Chih Chou, Yu-Chieh Lin, Che-An Cho, Microwave irradiation with dilute acid hydrolysis applied to enhance the Saccharification rate of water hyacinth (*Eichhornia crassipes*), *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.02.113

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Microwave irradiation with dilute acid hydrolysis applied to enhance the
2	Saccharification rate of water hyacinth (Eichhornia crassipes)
3	
4	Yuan-Chung Lin ^{1, 2*} , Sumarlin SHANGDIAR ¹ , Shang-Cyuan Chen ¹ , Feng-Chih Chou ¹ , Yu-
5	Chieh Lin ¹ , Che-An Cho ¹
6	¹ Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung
7	804, Taiwan.
8	² Ph.D Program in Toxicology, College of Pharmacy, Kaohsiung Medical
9	University, Kaohsiung 807, Taiwan.
10	Abstract
11	Sugar generated from aquatic plant biomass with high cellulose and hemicellulose content is
12	considered as a dynamic progression towards the advancement in bio products. Hence, this
13	study investigated the possibility of enhancing the saccharification rate of sugar from water
14	hyacinth (Eichhornia crassipes) by microwave heating system. The method of full factorial
15	experimental design was adopted to explore different parameters that influence the conversion
16	rates of fibers into fermentable sugar. The structural changes of the fibers after microwave
17	treatment with dilute sulfuric acid was observed on the residue by using X- ray Diffractometer
18	(XRD), Fourier Transform Infrared Spectrometry (FTIR) and Environmental Scanning
19	Electron Micrograph (ESEM) analysis. The results obtained illustrates that hydrolysis time
20	reduces to approximately 40% and effectively improve the rate of saccharification to 13.94 %
21	with optimal sugar concentration of 4650 mg/L.

Download English Version:

https://daneshyari.com/en/article/6764379

Download Persian Version:

https://daneshyari.com/article/6764379

<u>Daneshyari.com</u>