Accepted Manuscript

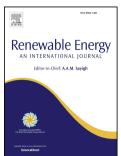
Cultivating *Ciona intestinalis* to counteract marine eutrophication: Environmental assessment of a marine biomass based bioenergy and biofertilizer production system

Roman Hackl, Julia Hansson, Fredrik Norén, Olle Stenberg, Mikael Olshammar

PII: S0960-1481(17)30667-5

DOI: 10.1016/j.renene.2017.07.053

Reference: RENE 9028


To appear in: Renewable Energy

Received Date: 22 February 2017

Revised Date: 9 June 2017 Accepted Date: 11 July 2017

Please cite this article as: Hackl R, Hansson J, Norén F, Stenberg O, Olshammar M, Cultivating *Ciona intestinalis* to counteract marine eutrophication: Environmental assessment of a marine biomass based bioenergy and biofertilizer production system, *Renewable Energy* (2017), doi: 10.1016/i.renene.2017.07.053.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Cultivating Ciona Intestinalis to counteract marine eutrophication:
- 2 Environmental assessment of a marine biomass based bioenergy
 - and biofertilizer production system

3 4 5

Roman Hackl^a, Julia Hansson^b, Fredrik Norén^c, Olle Stenberg^d, Mikael Olshammar^a

6 7

8

9

10 11 12

13

14

15

16

17 18

19

ABSTRACT: Eutrophication in the North and Baltic Seas is a major problem to the marine environment and the communities depending on it. To counteract this, the Swedish Marine and Water Authority suggested financial support for measures that increase the uptake of nutrients from the water by e.g. marine organisms and support for the utilization of these organisms as value added products. In Sweden the use of biogas to replace fossil transportation fuels is widely adopted. The domestic biogas production corresponded to approx. 1.95 TWh (approx. 7010 TJ) in 2015 of which approx. 63 % were upgraded for use as e.g. transportation fuel. Other uses are heat and electricity generation as well as industrial applications. To expand production, the biogas industry is searching for new substrates.

20 21 22

23

24

25 26

27

28

29

30

In this paper the utilisation of the marine evertebrate organism Ciona intestinalis (tunicata), cultivated in the North Sea and used as feedstock for biogas and biofertilizer production is suggested and assessed. The greenhouse gas (GHG) emissions performance of the concept and it's consequences on marine eutrophication are investigated applying life cycle assessment. Results show that at full scale biogas production from *C. intestinalis* reduces GHG emissions by more than 65 % compared to fossil transportation fuels. In addition, the results show that accounting for the system consequences of other products and services such as biofertilizer replacing mineral fertilizers and decreased marine eutrophication largely increase the environmental benefits provided by the concept. Approx. 3.7 g-N_{eq}/MJ_{biogas} of nitrogen are removed from the marine environment during the cultivation of *C. intestinalis*.

31 32 33

34 35

36

KEYWORDS: biogas; biofertilizer; marine biomass; renewable energy; eutrophication; bioenergy

Nomenclature

C. intestinalis
CH₄
CO₂
CO_{2eq}
DM
GHG
LCA
LCI
N
N₂O
N_{eq}
NH₃-N
NH₄-N

Ciona intestinalis

Methane

Carbon Dioxide CO₂ equivalents

Dry Mass

GreenHouse Gases Life Cycle Assessment Life Cycle Inventory

Nitrogen Nitrous oxide

Nitrogen equivalents Ammoniacal nitrogen Ammonium as N Phosphorous

^a IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 27 Stockholm, Sweden

^b Chalmers University of Technology, 412 96 Gothenburg, Sweden

^c N-research, Gränsgatan 17, 45330 Lysekil

^d Marine Biogas, Krokslättsgatan 55, 431 67 Mölndal, Sweden

Download English Version:

https://daneshyari.com/en/article/6764438

Download Persian Version:

https://daneshyari.com/article/6764438

<u>Daneshyari.com</u>