Accepted Manuscript


Friction Loss and Energy Recovery of a Pelton Turbine for Different Spear Positions

Heungsu Jeon, Joo Hoon Park, Youhwan Shin, Minsuk Choi

PII:	S0960-1481(18)30178-2
DOI:	10.1016/j.renene.2018.02.038
Reference:	RENE 9769
To appear in:	Renewable Energy
Received Date:	04 February 2017
Revised Date:	29 January 2018

06 February 2018

Accepted Date:

Please cite this article as: Heungsu Jeon, Joo Hoon Park, Youhwan Shin, Minsuk Choi, Friction Loss and Energy Recovery of a Pelton Turbine for Different Spear Positions, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.02.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1

1	Friction Loss and Energy Recovery of a Pelton Turbine for
2	Different Spear Positions
3	
4	Heungsu Jeon ¹ , Joo Hoon Park ² , Youhwan Shin ^{2,*} and Minsuk Choi ^{1,*}
5	
6	¹ Department of Mechanical Engineering, Myongji University, Yongin 17058, South Korea
7	² Center for Urban Energy Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
8	* Corresponding Author: Y. Shin (<u>yhshin@kist.re.kr</u>) & M. Choi (<u>mchoi@mju.ac.kr</u>)
9	
10	Abstract
11	This study is dedicated to find a cause of a critical flow rate in a Pelton turbine operating with a constant
12	runner speed, below which the efficiency of the turbine decreases significantly. A critical flow rate was initially
13	found in the performance test of the Pelton turbine for extracting energy from a PRO (pressure retarded osmosis)
14	pilot plant. For higher flow rates than a critical value, the efficiency of the Pelton turbine was nearly constant
15	independent of flow rates. For lower flow rates than a critical value, however, the efficiency drops with
16	decreasing flow rates. 3D flow simulations were conducted at three different flow rates to investigate effects of
17	flow rates on the performance of the Pelton turbine. It was found in the numerical results that a large friction
18	loss is generated in an injector if the spear is closed too tightly for a low flow rate below a critical value. Head
19	loss coefficients of the injector for three different spear positions were calculated and it was found that the loss
20	is doubled below a critical flow rate. This implies that it is important to include the geometry of an injector and
21	spear in the numerical simulations for Pelton turbines.
22	Keywords: Pelton turbine, Injector, Friction loss, Head loss coefficient, PRO
23	
24	1. Introduction
25	

For a country with energy shortages, it is very important to generate power from renewable energy resources such as solar, hydro, marine and wind energies without any pollution. PRO is a power generation technique based on osmotic energy, with which fresh water passes through a semipermeable membrane to sea water and Download English Version:

https://daneshyari.com/en/article/6764538

Download Persian Version:

https://daneshyari.com/article/6764538

Daneshyari.com