Accepted Manuscript

Optimization of adsorption isotherm types for desiccant air-conditioning applications

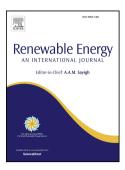
Muhammad Sultan, Takahiko Miyazaki, Shigeru Koyama

PII: S0960-1481(18)30045-4

DOI: 10.1016/j.renene.2018.01.045

Reference: RENE 9650

To appear in: Renewable Energy


Received Date: 24 August 2016

Revised Date: 13 July 2017

Accepted Date: 14 January 2018

Please cite this article as: Sultan M, Miyazaki T, Koyama S, Optimization of adsorption isotherm types for desiccant air-conditioning applications, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.01.045.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Opti	mization of adsorption isotherm types for desiccant air-
2		conditioning applications
3		G 11
4		
5		Muhammad Sultan ^{1,*} , Takahiko Miyazaki ^{2,3} , Shigeru Koyama ^{2,3}
6		
7	1	Department of Agricultural Engineering, Bahauddin Zakariya University,
8		Bosan Road, Multan 60800, Pakistan
9		
10		² Faculty of Engineering Sciences, Kyushu University, Kasuga-koen 6-1,
11		Kasuga-shi, Fukuoka 816-8580, Japan
11 12 13		
13	3 I 1	nternational Institute for Carbon-Neutral Energy Research (WPI-I ² CNER),
14		Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
15		
16		*Corresponding Author: Muhammad Sultan, Dr.Eng.
17		Emails: muhammadsultan@bzu.edu.pk
18		Tel: +92-333-610-8888
19		
20	Abstract	

21

22

23

24

25

26

27

28

29

30

31

The present study investigates five kinds of adsorbents for desiccant air-conditioning (DAC) applications. Each adsorbent yield distinctive water vapor adsorption isotherm that can be categorized as type-I, type-II, type-III, type-V, and type-linear on the basis of the International Union of Pure and Applied Chemistry (IUPAC) classification. Ideal DAC cycle is evaluated for the air-conditioning (AC) applications, and steady-state moisture cycled (MC_{SS}) is estimated by means of adsorption isobars. Results showed that the adsorbent enabling type-linear adsorption MC_{SS} for ACof isotherm gives maximum industrial processes matches manufacturing/drying/storage, rubber dipped goods storage and photo studio drying room. However, adsorbent enabling type-V adsorption isotherm is found the optimum adsorbent for tobacco stemming/stripping/softening and optical lenses grinding. For industrial AC process of dipped surgical articles; adsorbents enabling type-II, type-linear, and type-I adsorption isotherms

Download English Version:

https://daneshyari.com/en/article/6764773

Download Persian Version:

https://daneshyari.com/article/6764773

<u>Daneshyari.com</u>