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a b s t r a c t

Building energy performance simulations are limited to typical meteorological weather conditions
available in simulation software. Such simulations are insufficient for analysing energy performance
sensitivity to a range of probable weather conditions. This research presents a method for developing
robust meteorological weather data that can be used for energy performance sensitivity analysis without
the need to access historical weather data. The method decomposes dry bulb temperature (DBT) and
global horizontal solar radiation (H) into deterministic and stochastic components. For the typical
weather data of the City of Adelaide, the deterministic component for each of DBT and H consists of a
single frequency Fourier series. The stochastic components consist of 1-lag and 2-lags autoregressive
models for DBT and H respectively. The stochastic components also include randomly selected values
from the residuals of the autoregressive models. Based on this method, the coldest and hottest weather
conditions were selected to simulate the energy performance of a single space. The results revealed 39%
more cooling and 15% less heating in the hottest year, and 14% more heating and 64% less cooling in the
coldest year. The results indicate that simulations based on typical weather conditions only are insuf-
ficient for assessing buildings' energy performance.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Energy usage in the building sector accounts for approximately
20% of the total end-use of energy worldwide [1]. Reducing this
high energy usage requires proper designs to improve the perfor-
mance of buildings and buildings' energy systems. Typically, the
designs are based on building energy simulation results to identify
necessary size and capacity of different components. For instance,
the results of such simulations can reveal whether additional
thermal insulation for walls or roof is required. Such simulations
consider ambient conditions and weather variables, such as dry
bulb temperature (DBT), relative humidity and global solar radia-
tion (H). Weather data, such as TM2 weather data, available in
simulation software are compiled from historical and estimated
weather data based on a defined statistical method [2]. Typically, a
simulation software provides a singleweather data file for a specific
location which allows analysing a building's energy performance
under typical long term weather conditions. Although designs
based on typical long term weather conditions may seem suitable
to achieve typical expected long term performance, such designs do

not guarantee the expected performance when weather conditions
deviate from that in the simulation. The uncertainties in weather
conditions are often overcome by applying safety factors to oversize
different components of the system. However, without proper
analysis, this approach may unnecessarily oversize the system and
increase the capital cost or undersize the system and reduce ther-
mal comfort. In either of these two cases, the operating conditions
of the system will not match those of optimal performance, which
unnecessarily increases energy usage. Therefore, a proper analysis
requires simulating the building's energy performance under
multiple weather conditions which are as likely to happen as the
typical conditions.

In addition, performance analysis of renewable energy and en-
ergy storage systems, as in Refs. [3,4], can be improved by using
multiple weather conditions. Similarly, when the performance of a
renewable energy system is optimised for a periodmore than a year
[5,6], instead of repeatedly using the same weather conditions for
the required number of years, a variation of likely weather condi-
tions can be applied for different years. The different yearly
weather conditions are likely to influence the optimisation results.

To analyse the performance sensitivity in relation to weather
conditions, researchers can simulate the energy performance using
historical weather data. However, this data is often unavailable and
incomplete [7], and detailed processing is required to organise the
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data in a format, such as TM2, TM3 or EPW format, that is
compatible with simulation software [8]. These limitations deny
most researchers the ability to analyse building's performance
sensitivity to weather conditions.

To overcome these limitations researchers can use weather data
generators such as RUNEOLE [9]. Weather data generators are
useful when weather data are unavailable. Using historical data,
and physical and statistical models, weather data generators can
generate typical and extreme weather conditions [10]. However,
weather data generators are unnecessary when typical weather
data are available, especially when the weather data generators
may be unavailable to researchers.

When typical weather data are available, researchers can
develop synthetic data that have similar statistical characteristics
as the typical weather data. Synthetic weather data were generated
in a top-down approach using CLIMED software. Using algorithmic
chains, the software generated monthly weather data which were
used as input to generate daily weather data, and the daily weather
data were used to produce hourly data [7]. However, this process
required accessing weather data similar to the considered site to
adjust the model parameters used in the software. The generation
of synthetic datawere also explored by using the “smooth” function
in MATLAB software to identify a trend in the weather data for each
month, and the residuals between the identified trend and the
initial datawere then randomly resampled. The synthetic data from
this process would be the sum of the monthly trends and the
randomly resampled data. However, the generated synthetic data
using this process were unsatisfactory as excessive fluctuations
were observed in the trend for the entire year [11]. Based on a
previous work of Boland [12], an improvement in identifying the
trend was the use of Fourier series analysis [13]. Additional im-
provements were also included in the work of Rastogi and Ander-
sen [13] for developing synthetic data based on typical weather
data. These improvements included fitting a seasonal autore-
gressive moving average (SARMA) model to the Fourier series re-
siduals and performing 3-days blocks of random sampling within
each month to maintain the intrinsic weather inertia in the data as
suggested by Magnano, Boland and Hyndman [14].

While these improvements produce synthetic data statistically
similar to the original data, some of the adopted procedures
complicate the process of synthetic data generation. For instance,
instead of fitting a SARMA model to the Fourier series residuals, an
autoregressive moving average (ARMA) model should be sufficient
as all the important frequencies can be detected and detrended
using the Fourier series analysis. In addition, using 3-days blocks for
random sampling seems unnecessary as an ARMA model of the
Fourier series residuals is meant to model the intrinsic inertia of
weather data.

This research presents a method for developing a robust mete-
orological year (RMY), without the need of accessing historical
weather data, based only on typical data available in simulation
software. The method decomposes the data into deterministic
(Fourier series) and stochastic (ARMA þ residuals) components.
The deterministic component is maintained the same throughout
the process of developing the RMY data, while the stochastic
component is modified by random sampling. This method has
three main differences compared with other methods. First, this
method is based on average daily values for the modelling of both
deterministic and stochastic components. The average values
smooth the data and simplify the modelling of deterministic and
stochastic components. Second, instead of resampling each month
separately, the method allows mixing the errors from different
months. The mixing allows creating a wider range of variations in
the robust data. Third, the generation of hourly data from average
daily synthetic data is based on selecting hourly data from the

initial data. This selection eliminates the need for detecting outliers
in the hourly synthetic data.

The method presented in this research uses the TM2 weather
data for the City of Adelaide developed byMeteonorm. The focus of
the method is on DBT and H as the two main weather conditions
affecting building energy performance.

2. Data deterministic component e Fourier series models

2.1. Dry bulb temperature

The seasonality of the daily average dry bulb temperature (DBT)
is clearly shown in Fig. 1, with the average DBT in summer being
higher than that in winter. The variation of DBT can be modelled by
a deterministic function; a Fourier series (FS) which has a frequency
equal to one cycle per year.

Higher frequencies that may represent quarterly (frequency
equals 4) or monthly (frequency equals 12) variations could also be
significant to represent the data with a FS. However, the frequency
power spectrum shown in Fig. 2, reveals that the power corre-
sponding to frequencies higher than the fundamental frequency
(frequency equals 1) is negligible compared to the power of the
fundamental frequency. This result indicates that using the
fundamental frequency is sufficient to capture most of the periodic
variation in the data.

Consequently, the FS model (TFS) of the average daily DBT can be
represented by Equation (1)

TFS ¼ T þ a cosðutÞ þ b sinðutÞ (1)

where T is the average temperature calculated as in Equation (2)

T ¼
P365

i¼1Ti
365

(2)

where Ti is the average daily DBT.
The value of u is calculated as shown in Equation (3)

u ¼ 2p
365

(3)

and the remaining unknown coefficients a and b in Equation (1) are
calculated tominimise the sum of the squared errors (SSE) between
the data and the FS. The SSE is calculated as shown in Equation (4)

SSE ¼
X365
i¼1

�
TFSi � Ti

�2 (4)

The minimum value of SSE is achieved for a and b equal to 5.122
and 2.075 respectively, and the FS model can by written as in

Fig. 1. Average dry bulb temperature (�C).
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