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a b s t r a c t

Modeling renewable energy systems is a computationally-demanding task due to the high fluctuation of
supply and demand time series. To reduce the scale of these, this paper discusses different methods for
their aggregation into typical periods. Each aggregation method is applied to a different type of energy
system model, making the methods fairly incomparable.

To overcome this, the different aggregation methods are first extended so that they can be applied to
all types of multidimensional time series and then compared by applying them to different energy
system configurations and analyzing their impact on the cost optimal design.

It was found that regardless of the method, time series aggregation allows for significantly reduced
computational resources. Nevertheless, averaged values lead to underestimation of the real system cost
in comparison to the use of representative periods from the original time series. The aggregation method
itself e.g., k-means clustering plays a minor role. More significant is the system considered: Energy
systems utilizing centralized resources require fewer typical periods for a feasible system design in
comparison to systems with a higher share of renewable feed-in. Furthermore, for energy systems based
on seasonal storage, currently existing models integration of typical periods is not suitable.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Developing an energy system design that minimizes costs and
environmental impact is a complex task due to the spatial and
temporal gap between energy production and demand. In conse-
quence, optimization algorithms are required for solving these
design problems [1e11].

However, the algorithms used hitherto are computationally
demanding: The size of the input data directly influences that of the
related optimization problem, and with it the requirement for
processing resources. For this reason, it is often necessary to
simplify the design problem in advance.

Therefore, different options for complexity reduction exist and
include: Spatial aggregation which reduces the number of nodes in
an energy system network [12]; simplifying the technology models
by reducing nonlinearities or discontinuities so as to avoid non-
convexity of the program [13,14]; and temporal aggregation,

which creates typical periods representing the original input time
series.

The creation of recurring periods is popular because of the
existing patterns in the hourly, daily and seasonal variation for the
majority of design relevant time series. Therefore, it is reasonable to
reduce redundant data until the minimal representative data set
required for the problem is reached. Fig. 1 visualizes this redun-
dancy by showing the result of a Fast Fourier Transformation (FFT)
of different time series that are typically required for an energy
system design. The frequencies with the highest amplitudes are
highlighted and are, as anticipated, the daily and annual variations.

For this reason, many different methods for the selection of
typical periods have been presented. Aside from custom exact
optimization methods [17,18], and graphical methods [19], the
majority use heuristic methods or greedy clustering algorithms for
the aggregation of typical periods. Creating representative days by
averaging time series, for example over a type of day defined by
month or weekday, has been popular [20e23]. [24] refers to it as
time-chronological averaging. Recent attempts use the k-means
clustering [25e28], hierarchical clustering [29,30], or k-medoids
clustering - either based on a greedy algorithm [31,32] or an exact
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solution of a MILP [33,34] - for the selection of typical periods.
Nevertheless, each method is applied to a different system and it is
difficult to identify which is the most suitable. While Schuetz et al.
[35] compare methods for building energy systems, they note that
future research should focus on the appropriateness of clustering
algorithms for different design applications. Moreover, the period

length should be varied so as to assess the impact of storage effects.
A further difficulty is that the system considered determines the

minimal required dataset. For renewable energy systems, a higher
resolution of the input times-series is required thanwith their fossil
counterparts [36]. For conventional system design, it could be
sufficient to reduce the dataset to a few time steps [27], while for a
storage based system design different typical weeks are required
[30,37].

In summary, the following open research questions present
themselves:

� Which time-series aggregation method is best suited for which
energy system design application?

� What is the minimum number of aggregated time steps to
model such a system?

� What is an appropriate period length - typical days or typical
weeks?

To answer these, this paper is structured as follows: First
different deterministic methods including k-mean clustering, k-
medoids clustering and hierarchical clustering as aggregation
methods are presented in section 2, where the possibilities of
adding extreme periods are also discussed. In section 3, the ag-
gregation methods are used to select four typical days of different
time series that could be relevant for an energy system design. The
aggregated profiles are then graphically analyzed and through ac-
curacy indicators. In the following, the different methods are
applied in section 4 to three design optimization problems of a heat
and electricity supply system:

1. A cogeneration unit with a heat storage as benchmark system
2. A residential system based, amongst other elements, on pho-

tovoltaics and a heatpump
3. An island system with a high share of renewables with the

support of different storage technologies

To validate the methods, the results for different numbers of

Nomenclature

Variables
d Binary variable determining the existence of a

technology
m Representative values of a typical period
D Scaling of a device
E Energy flow between two devices
SOC State of charge
y Binary variable determining if the candidate period is a

cluster center
z Binary variable determining candidate cluster

assignment

Parameters
Dt Duration of a single time step
h Efficiency
t Lifetime
C Set of periods inside a cluster
L Set of device connections
N Size of an index set
x Normalized candidate value

Subscripts and sets
ε Energy type
f Index of the Transformer class
n Index of the Collector class
q Index of the Source/Sink class
s Index of the Storage class
a Attribute represented by a time series
d Considered device or technology
g Time step index inside a period
i Candidate period index
k Typical period index
t Time step index of the full series

Abbreviations
CRF Capital Recovery Factor
LB Lower bound
UB Upper bound
CAPEX Specific capital expenditure
CHP Combined Heat and Power plant
GHI Global Horizontal Irradiance
OPEX Specific fix operational expenditure
RMSE Root Mean Squared Error
WACC Weighted Average Cost of Capital

Fig. 1. Fast Fourier Transformation of the Global Horizontal Irradiance (GHI), the
temperature and the wind speed of a test reference year (Location: Bad Marienberg,
Germany) [15] and a representative electrical load profile of a residential building
(Profile 1) [16].
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