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a b s t r a c t

In this paper, we introduce analytical solutions for transient heat conduction in an infinite solid mass
subjected to a varying single or multiple cylindrical heat sources. The solutions are formulated for two
types of boundary conditions: a time-dependent Neumann boundary condition, and a time-dependent
Dirichlet boundary condition. We solve the initial and boundary value problem for a single heat
source using the modified Bessel function, for the spatial domain, and the fast Fourier transform, for the
temporal domain. For multiple heat sources, we apply directly the superposition principle for the
Neumann boundary condition, but for the Dirichlet boundary condition, we conduct an analytical
coupling, which allows for the exact thermal interaction between all involved heat sources. The heat
sources can exhibit different time-dependent signals, and can have any distribution in space. The so-
lutions are verified against the analytical solution given by Carslaw and Jaeger for a constant Neumann
boundary condition, and the finite element solution for both types of boundary conditions. Compared to
these two solutions, the proposed solutions are exact at all radial distances, highly elegant, robust and
easy to implement.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the currently utilized analytical solutions for heat
equations in solid domains are based on the work provided by
Carslaw and Jaeger [1], who seem to be the first to introduce a
comprehensive treatment of heat conduction in solids subjected to
different combinations of initial and boundary conditions. They
introduced solutions to heat flow in finite, semi-infinite and infinite
domains subjected to point, line, plane, spherical and cylindrical
heat sources. In this paper, the focus is placed on heat flow in an
infinite domain subjected to cylindrical heat sources, a topic which
is central in many engineering applications, mainly in modeling
shallow geothermal systems [2e5].

A shallow geothermal system, known as geothermal heat pump
(GHP), and also ground source heat pump (GSHP), is a source of
renewable energy that utilizes the earth heat energy from shallow
depths for heating and cooling of buildings. It works by circulating a

fluid in a borehole heat exchanger (BHE) which ensures a good
thermal interaction with the surrounding soil mass. In many of the
currently available models for shallow geothermal systems, the
BHE is considered as a constant heat source.

Usually, shallow geothermal systems consist of multiple bore-
hole heat exchangers. Modeling such a system typically requires
numerical methods, such as the finite difference [6] and [7], finite
volume [8] and [9], or finite element [10e12]. Nevertheless, some
limited number of analytical and semi-analytical models has been
introduced, notably those given by Eskilson and Claesson [13],
Pasquier and Marcotte [14] and Erol et al. [15]. The basic idea
behind the possibility of utilizing analytical methods for solving
multiple heat sources problems is the use of the superposition
principle.

Eskilson and Claesson [13] introduced a semi-analytical model
for heat flow in a 1D finite line heat source embedded in an
axisymmetric solid mass. They utilized the principle of super-
position to account for multiple heat sources. They introduced
what they termed “error” to approximate the difference between
heat flow due to a single heat source and that of multiple heat
sources. The approximation is made using the Fourier expansion to
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the first order of the thermal interaction between the heat sources.
Their solution is effective for symmetric heat sources distribution,
and necessitates separation between heat sources at the corners of
the geometry and those in the middle.

Pasquier and Marcotte [14] introduced a semi-analytical model
for heat flow in a solidmass subjected tomultiple heat sources with
time-varying heat fluxes and temperatures. The model allows for
the imposition of heat sources with different heat fluxes or tem-
peratures. They applied the fast Fourier transform for the temporal
domain and the superposition principle for the spatial domain. The
multiple heat sources system is solved using an iterative algorithm,
which couples the thermal interaction between the involved heat
sources. The algorithm has been applied to the infinite line source
model, but can be extended to any model that can be decomposed
into an incremental heat flux function, and the involved integral
can be evaluated for a unit rectangular heat pulse, such as the finite
line source and the infinite cylindrical line source.

Erol et al. [15] introduced a modified Green’s function for heat
flow in a porous domain subjected to a constant line heat source
with a finite length. The prescribed heat flux is discontinuous,
described by a rectangular pulses function. The convolution theory
in time domain is utilized to solve the initial and boundary value
problem for a single heat source. For themultiple heat sources, they
utilized the superposition principle by summing up the temporal
convolved functions of the heat sources.

In this paper, we elaborate on these models and introduce
analytical solutions for transient heat flow in an infinite solid mass
subjected to a varying single or multiple cylindrical heat sources.
Solutions for two types of boundary conditions are introduced: a
prescribed heat flux (Neumann boundary condition), and a pre-
scribed temperature (Dirichlet boundary condition). We solve the
initial and boundary value problem using themodified Bessel series
and the fast Fourier transform. For multiple heat sources, we apply
directly the superposition principle for the Neumann boundary
condition. For the Dirichlet boundary condition, an analytical
coupling. allowing for the thermal interaction between all involved
heat sources, is conducted. The heat sources can exhibit different
time-dependent signals, and can have any distribution in space.

2. Single heat source in a solid mass

Heat conduction in an infinite cylinder constituting a homoge-
neous, isotropic solid is described as
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where T ¼ T(r) is the temperature of the solid mass; r is the radial
distance: and a(m2/s) is its thermal diffusivity, defined as

a ¼ l

rc
(2)

in which l(W/m K) is the thermal conductivity; r(kg/m3) is the
mass density; and c(J/kg K) is the specific heat capacity.

The initial condition is:

Tðr; t ¼ 0Þ ¼ Tst (3)

in which Tst is the initial steady state temperature before operating
the heat sources.

The boundary condition at infinity is:

DT jr¼∞;t ¼ T jr¼∞;t � Tst ¼ 0 (4)

which implies that the heat source effect vanishes at far distances.
The boundary condition at the sources might be any of two

types:
Neumann boundary condition:

�l
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¼ qsðtÞ (5)

Dirichlet boundary condition:

Tjr¼rs ¼ TsðtÞ (6)

where qs(t) is the heat source flux (W/m); Ts(t) is the heat source
temperature; and rs is the radius of the heat source (for a line
source, rs approaches zero).

Applying Fourier transform of Eq. (1), gives [12].
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where bT is the temperature frequency response. Eq. (7) is a complex
ordinary differential equation, describing a modified Bessel equa-
tion. The solution of this equation can be expressed as

bT r;uð Þ ¼ AKo k rð Þ þ BIo k rð Þ (8)

where

k ¼
ffiffiffiffiffi
iu
a

r
(9)

and Io and Ko are the first and second kind of modified Bessel
functions.

Applying the boundary condition, Eq. (4), to Eq. (8), leads to

DbT ����
r¼∞

¼ AKoð∞Þ þ BIoð∞Þ ¼ 0 (10)

As Ko(∞) ¼ 0 and Io(∞) ¼ ∞, it implies that B ¼ 0, yielding

bT r;uð Þ ¼ AKo k rð Þ (11)

Nomenclature

T Temperature of the solid mass (K)bT Temperature frequency response
Ts Heat source temperature(K)
Tst Initial steady state temperature (K)
qs(t) Heat source flux (W/m)
qo Constant cylindrical heat flux per meter length
r Radial distance(m)
rs Radius of the heat source (m)
a Thermal diffusivity (m2/s)
l Thermal conductivity (W/m$K)
r Mass density (kg/m3)
c Specific heat capacity (J/kg$K)
Io First kind of modified Bessel functions
Ko Second kind of modified Bessel functions
J0 First kind Bessel functions of the order 0
J1 First kind Bessel functions of the order 1
Y0 Second kind Bessel functions of the order 0
Y1 Second kind Bessel functions of the order 1
N Number of the discrete samples
u Angular frequency
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