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a b s t r a c t

The need to reduce the impact of traditional electricity generation necessitates an increase in the
optimization of alternative systems that produce less environmental contamination. Renewables play a
key role, with solar energy considered one of the most important energy supply sources. Solar power
plants have to be perfectly designed to optimize electricity generation, and their placement must be as
suitable as possible for the meteorological conditions. Clouds are the most mitigating factor in solar
energy production and their study is decisive in locating the plant. Apart from the importance of
studying clouds before building the solar plants, cloud detection is equally decisive in adapting plant
operation to cloud types during solar power plant operation.

This adaptation benefits plant performance and allows electricity management to be integrated into
the electricity grid. Nonetheless, the majority of cloud studies determine atmospheric parameters, which
are sometimes not available. In this work, we have developed an automatic, fully-exportable cloud
classification model, where Bayesian network classifiers were applied to satellite images so as to
determine the presence of clouds, classifying the sky as cloudless or with high, medium and low cloud
presence. There was an average success probability of 90% for all sky conditions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

One of the determining factors for a country’s economic and
industrial development is whether it can combine energy supply
with the need to meet increasingly restrictive environmental re-
quirements [1]. Renewables, therefore, offer a significant compet-
itive advantage as they harness their own inexhaustible supply and
do not emit carbon dioxide emissions into the atmosphere. Over
recent years, solar energy has become ever more relevant with an
expansion in the number of operational solar plants [2]. For this
reason, solar thermal and solar photovoltaic technologies play an
indispensable role in electricity generation.

Accurate understanding and modelling of solar radiation is
essential to evaluate renewable energy resources, the climate and
hydrological models. Precise historical solar radiation data are

required for the places where solar plants are to be built. However,
radiation stations are not always sited in these geographical loca-
tions. In such cases, interpolation and/or extrapolation techniques
are used, which are imprecise methods in many situations.

In order to improve the results for interpolation/extrapolation
techniques of solar radiation data, different studies have shown
that using satellite imagery improves the solar radiation estimation
in places where it is not possible to obtain radiation data from solar
radiation stations. Hence, geostationary satellites, such asMeteosat,
provide continuous land observations, which allow us to observe
changes in the satellite path to land occurring over short time in-
tervals due to solar irradiance. This is the reason why satellite im-
agery is one of the best options for estimating solar radiation and
evaluating its energy potential at any location.

Over recent decades, various researchers have estimated solar
radiation from satellite images. Zelenka et al., 1992 [3] used
empirical relationships to evaluate clouds. Following this, the au-
thors implemented daily global radiation estimations.
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in Paris, collaborating with other European research centres,
developed a statistical model to estimate solar radiation incidence
on the Earth’s surface using Meteosat images. This model is widely
known as Heliosat [4e6] and provides a correlation between cloud
cover and the global radiation incident at a point on the Earth’s
surface to estimate solar radiation. Using visible MSG satellite im-
ages, Badescu and Dumitrescu 2014 [7] estimated global radiation,
where measured values were tested against estimations for a re-
gion in Romania. Furthermore, simple models have been proposed
for solar radiation computation using the Meteosat Cloud Frac-
tional Coverage dataset [8] under different sky conditions (cloud-
less and overcast). By classifying the sky into clear, overcast or
cloudy, solar global radiation was estimated, offering the best
cloudy sky modelewith a relative root mean square error value
ranging from approximately 17 to 68% [9,10].

Bosch et al., 2010 [11] combined the Heliosat-2 model with
digital terrain models (DTM) to estimate a clear sky index (Kc)
along with global daily radiation at a mountainous site, taking into
account the sun obstruction caused by the presence of mountains.
The root-mean-square error (RMSE) values oscillated between
approximately 9-15%, when the estimated radiation was compared
to data from four stations.

Analyzing the impact of atmospheric constituents on the study
of solar radiation, clouds are presented as the highest attenuating
factor. Up until the end of last century, cloud classification was
performed by human observers, identifying cloud types visually
and dividing the sky into oktas [12]. In Ref. [13], the authors made a
prediction of cloud cover using the number of oktas, obtaining
satisfactory results. Nowadays, the cloud classification scheme,
which can be found in “The International Clouds Atlas” [14], is
based on a Latin Linnean system [15], which were the first studies
related to cloud classification. Subsequently, many authors have
studied cloud coverage using various techniques and technologies.

Martínez-Chico et al. [16] combined DNI (direct normal irradi-
ance) and sky camera imagery to perform a cloud classification
(into four groups) aiming to show radiation attenuation based on
cloud type. In addition to this, a cloud identification system was
developed where the sky camera images were processed according
to a sky classification [17], thus solving the pixel saturation problem
in the solar area [18]. These studies were concluded with a solar
radiation estimation using the pixel information from the sky im-
age [19] applying the cloud motion vectors to obtain solar irradi-
ance forecasting over the short term [20]. Moreover, satellite
images have also been used to study cloud cover and cloud classi-
fication. Probabilistic neural networks and fuzzy logic techniques
were employed to determine cloud classification from AVHRR
satellite images, as shown in Refs. [21] and [22], respectively.
Furthermore, using Landsat-7 satellite images, the clouds were
characterized with satisfactory results [23].

Meteosat Second Generation (MSG) satellite images have been
widely used for the study of atmosphere composition, including the
presence of clouds. Escrig et al., 2013 [24] used these images for
studying cloud cover and for classifying the clouds into three
different layers (high, medium and low) depending on the cloud
ceiling. In this article, different multispectral tests were applied to
satellite images, showing over 85% agreement between the clouds
detected by a whole-sky camera and the clouds derived from
multispectral tests. The importance of such cloud identification
allows us to reproduce the motion of clouds observed using cloud
motion vectors. This objective was presented in a study, where
satellite and sky camera imagery where combined to make a
cloudiness forecast for the short- and medium-term [25] with
satisfactory results. The cloudiness forecast was represented using
a real-time GUI designed especially for solar power plant operators,
providing useful information about the cloud presence over a solar

field in near time horizons [26]. Therefore, the importance of cloud
classification is valued in various fields, but overall in solar power
plant management. Nonetheless, most studies developed for cloud
classification require atmospheric parameters that are not always
available.

The aim of this work is to apply and evaluate an automatic
classification model construction based on Bayesian network clas-
sifiers to develop a reliable cloud classification model from satellite
imagery data; this can be integrated into solar power plant control
systems to improve a plant’s performance as well as the manage-
ment of electricity for integration into the electricity grid. This
model can be adapted to other latitudes providing a similar dataset
following the methodology proposed and avoiding the necessity to
have atmospheric parameters for the classification.

2. Materials and methods

2.1. Data collection

This work used satellite images for cloud classification. The
testing facility was located at the Solar Energy Research Centre
(CIESOL) at the University of Almería, Spain (36.8oN, 2.4oW, at sea
level), which has a Mediterranean climate and a high maritime
aerosol presence.

Satellite data from the years 2011e2013, and from all possible
sky types, were used.

All satellite channels were collected every 15minwhen the solar
altitude was higher than 10� so as to avoid mistakes caused by low
image brightness. Table 1 shows the twelve spectral channels and
details their properties. Besides satellite channels, each data sample
also collected solar altitude, along with diffuse and direct solar
radiation data.

SYNOP reports provided by the State Meteorological Agency
(AEMET) for the years 2011e2013 (situated at Almería air-
porte36.5�N, 2.21�W, at 21 m above sea level, and with a distance
of about 4 km from CIESOL building) were also used in the vali-
dation process. We used a total sky camera with a rotational
shadow band (namely a TSI 880 model) with hemispheric sky
vision.

2.2. Cloud types

The atmospheric altitude range in which clouds are generally
encountered varies from sea level to the tropopause, i.e. 8 km in
polar regions, 13 km in medium latitudes and 18 km in the tropics.
By convention, the part of the atmosphere inwhich clouds typically
appear is vertically divided in three layers: high, medium and low.
Each layer is defined by the range of levels at which certain cloud
genera occur most frequently. Thus, in the different cloud layers are
[14,27e30]:

� Cirrus (Ci), Cirrocumulus (Cc) and Cirrostratus (Cs) for high
cloud layers. These are typically thin and white in appearance
but can appear in a magnificent array of colours when the sun is
low on the horizon.

� Altocumulus (Ac), Altostratus (As), and Nimbostratus (Ns) for
medium cloud layers. These are composed primarily of water
droplets; however, they can also be composed of ice crystals
when temperatures are sufficiently low.

� Cumulus (Cu) Stratocumulus (Sc), Stratus (St), and Cumulo-
nimbus (Cb) for low cloud layers. In this case, the clouds are
mainly composed of water droplets.

The layers overlap and their limits vary with latitude. Table 2
indicates the approximate limit heights [14,28,31].
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