

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling

Edson P. Marques Filho ^{a, b, *}, Amauri P. Oliveira ^c, Willian A. Vita ^b, Francisco L.L. Mesquita ^{b, d}, Georgia Codato ^c, João F. Escobedo ^e, Mariana Cassol ^f, José Ricardo A. França ^b

- ^a Federal University of Bahia, Institute of Physics, Salvador, BA, Brazil
- ^b Federal University of Rio de Janeiro, Institute of Geosciences, Rio de Janeiro, RJ, Brazil
- ^c University of SãoPaulo, Institute of Astronomy, Geophysics and Atmospheric Science, São Paulo, SP, Brazil
- d Brazilian Institute for Space Research, Centre for Weather Forecast and Climate Studies, São José Dos Campos, SP, Brazil
- e State University of São Paulo, School of Agronomic Sciences, Botucatu, SP, Brazil
- ^f Federal University of Bahia, Institute of Mathematics, Salvador, BA, Brazil

ARTICLE INFO

Article history: Received 23 March 2015 Received in revised form 10 December 2015 Accepted 8 January 2016 Available online xxx

Keywords:
Solar radiation components
Rio de Janeiro
Local climate conditions
Diffuse solar fraction model

ARSTRACT

The city of Rio de Janeiro and others 18 cities compose the Metropolitan Area of Rio de Janeiro. The main objective of this work is to characterize observationally the diurnal and seasonal evolution of the solar radiation components in the city of Rio de Janeiro. The measurements of global and diffuse solar radiation and standard meteorological variables at the surface have been carried out regularly at the Geoscience Institute of Federal University of Rio de Janeiro since October of 2011. The microclimatic conditions show that the period 2011–2014 was warmer during most of the year and drier in summer and spring in comparison with climate normal. All solar radiation components present a well defined diurnal cycle with maximum at noon. The estimates of global and direct solar radiation indicate a great potential available for solar energy at the surface, particularly in summer. The behavior of the clearness index and diffuse solar radiation fraction is similar in summer and winter. The Angstrom formula represents properly the estimate of the monthly average daily value of global solar radiation. The sigmoid logistic function is statistically more significant in comparison with others correlation models to represent the diffuse fraction as a function clearness index.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Solar radiation is the main source of energy in most of the surface—atmosphere interactions driving almost all physical, chemical and biological processes in earth's atmospheric and oceanic systems [1,2]. The knowledge of global (E_G), diffuse (E_{DF}) and beam (E_{DR}) solar radiation components at the surface is crucial to determine areas with potential for solar power generation [3–6], to assess the energy consumption in buildings [7], to subsidize ecophysiological studies [8,9], to estimate the evapotranspiration of crops [10] and to support urban planning [11].

Besides, due to environmental and economical reasons, tropical countries like Brazil will need to use their solar energy potential, estimated between 1500 and 2200 kW h m $^{-2}$ year $^{-1}$ [12], in order to diversify their energy matrix [13-15]. For instance, Brazil has an installed capacity of 134 GW of power generation, of which solar and wind energy contribute with 5% of this total [16].

Despite the importance, the knowledge of solar radiation field at the surface is still incipient in Brazil. There are small number of radiometric stations performing high quality measurements of E_G , E_{DF} and E_{DR} , and only few has long-term data sets [3,17–19]. Oliveira et al. [17] were the first authors that establish the seasonal variations of the diurnal evolution of E_G , E_{DF} and E_{DR} based on measurements collected at surface of the city of São Paulo. Codato et al. [20] compared the solar radiation field at the surface in the city São Paulo with a rural site located in the city of Botucatu, where a radiometric station is measuring E_G , E_{DF} and E_{DR} with high quality since 1994. Even though these two radiometric stations are 250 km distant apart, they have similar latitude and altitude and the solar

^{*} Corresponding author.

E-mail address: edson.marques@ufba.br (E.P. Marques Filho).

Nomenclature		K_D^d	daily value of diffuse fraction of the solar radiation (nondimensional)
а	Angstrom constant	K_T	clearness index (nondimensional)
b	Angstrom constant	K_T^h	hourly value of clearness index (nondimensional)
E_G	global solar radiation (Wm ⁻²)	$K_T^h \ K_T^d$	daily value of clearness index (nondimensional)
E_G^h	hourly value of global solar radiation at the surface (MJ	MDD	movable detector device
G	$m^{-2} hour^{-1}$	q	specific humidity (g kg ⁻¹)
E_G^d	daily value of global solar radiation at the surface (MJ	ŕ	ring width (cm)
	$m^{-2} day^{-1}$	R	ring-detector distance (cm)
E_{DF}	diffuse solar radiation (Wm ⁻²)	RH	relative humidity (%)
E_{DF}^{h}	hourly value of diffuse solar radiation at the surface	S	monthly average daily value of sunshine hours (hours)
DI	$(MJ m^{-2} hour^{-1})$	S_{max}	maximum monthly average daily value of sunshine
E_{DF}^d	daily value of diffuse solar radiation at the surface (MJ		hours (hours)
	$m^{-2} day^{-1}$)	T	air temperature (°C)
E_{DR}	beam solar radiation (Wm ⁻²)	w	hour angle at the sunset (degree)
E^h_{DR}	hourly value of beam solar radiation at the surface (MJ	α	solar elevation angle (degree)
DK	m^{-2} hour ⁻¹)	δ	solar declination angle (degree)
E_{DR}^d	daily value of beam solar radiation at the surface (MJ	φ	latitude (degree)
	$m^{-2} day^{-1}$	θ_z	solar zenith angle (degree)
E_T	extraterrestrial solar radiation (Wm ⁻²)	MBE	mean bias error
E_T^h	hourly value of extraterrestrial solar radiation at the	R^2	coefficient of determination
	top of atmosphere (MJ m ⁻² hour ⁻¹)	RMSE	root mean square error
E_T^d	daily value of extraterrestrial solar radiation at the top	t	t-test
	of atmosphere (MJ m ⁻² day ⁻¹)	d	index of agreement
F_C	diffuse correction factor (nondimensional)	AIC	Akaike's information criterion
K_D	diffuse fraction of the solar radiation (nondimensional)	$\Delta_i AIC$	difference of Akaike's information criterion
K_D^h	hourly value of diffuse fraction of the solar radiation (nondimensional)		

field at the surface in these both sites shows a similar seasonal variation. More recently, Ferreira et al. [21] characterized observationally the diurnal and seasonal variations of the radiation balance at the surface in the city of São Paulo. They concluded that, in addition to astronomical factors, the seasonal variation of E_G depends more on the atmospheric broadband transmissivity and less on the surface effective albedo. Pereira et al. [3] and Martins et al. [22] used E_G and E_{DR} measurements collected at surface by SOLAS network to validate the satellite-derived radiative transfer model. They produced maps of E_G , E_{DF} and E_{DR} that can be used to estimate the available potential for energy production based on solar radiation for the entire Brazil considering only a set of six surface stations and a short time period of observation.

High quality measurements of E_{Gr} , E_{DF} and E_{DR} during long periods of time can be used also to develop empirical models. Given E_G measurements on a horizontal surface, the E_{DF} component can be obtained through an empirical function that relates diffuse fraction of the solar radiation (K_D) with the clearness index (K_T) . This type of empirical model where first proposed by Liu and Jordan [23] to estimate daily values of E_{DF} in terms of E_G using a first order polynomial. These empirical models, also known as correlation models, have received considerable attention from the solar radiation community. They are usually expressed in terms of higher order polynomials, exponentials or logistic functions and may include multiple predictions for monthly, daily, hourly and shorter periods of time [24–26]. Erbs et al. [27] developed the correlation model for hourly value, but their results for E_G were very sensitive to the presence of clouds. Reindl et al. [28] showed that in addition to K_T , the inclusion of other variables such as solar elevation, ambient temperature and relative humidity, improved the predict hourly K_D . Skartveit et al. [29] obtained a better performance for hourly values considering a variability index of K_T to represent the influences of clouds in K_D . These works were developed to data collected in middle latitude regions located in the Northern Hemisphere, which have different characteristics from those observed in Southern Hemisphere [30].

Boland et al. [31] proposed a logistic function to represent K_D as a function of K_T with superior performance for an Australia location in comparison with the model of [28]. The theoretical framework for the use of the logistic function was presented in Ref. [32]. Oliveira et al. [33] showed that the overall characteristics of the K_D correlation model based on 4^{th} -order polynomials to the city of Sao Paulo represent the seasonal variations similar to other places with equivalent latitude for hourly, daily and monthly values. Soares et al. [34] used neural network technique to include implicitly the cloud effects in K_D using downward atmospheric longwave measurements at the surface. Their results for hourly K_D were better than those obtained by Ref. [33] for the same region.

In the search of more universal correlation model for K_D including additional predictors to represent the influences of different climate conditions, Ridley et al. [30] proposed the multi predictor model BRL to estimate E_{DF} and E_{DR} components. The daily clearness index, solar altitude, apparent solar time and global radiation persistence are some predictions of the BRL, and the results show a better statistical performance for different regions of the world. According to [35], correlations models performance for short time variations can considerably improve when cloud effects on solar radiation field at the surface are incorporated explicitly. However, estimates of some of these predictions, with high frequency sampling, are not easily available. A review about different correlations models to estimate hourly E_{DF} can be found in Refs. [24–26].

The main objective of this work is to characterize observationally the diurnal and seasonal evolution of E_G , E_{DF} and E_{DR} components in the city of Rio de Janeiro. Additionally, a new correlation model, based on fitting of logistic sigmoid function through

Download English Version:

https://daneshyari.com/en/article/6766010

Download Persian Version:

https://daneshyari.com/article/6766010

<u>Daneshyari.com</u>