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a b s t r a c t

Technical improvements over the past decade have increased the size and power output capacity of wind
power plants. Small increases in power performance are now financially attractive to owners. For this
reason, the need for more accurate evaluations of wind turbine power curves is increasing. New in-
vestigations are underway with the main objective of improving the precision of power curve modeling.
Due to the non-linear relationship between the power output of a turbine and its primary and derived
parameters, Artificial Neural Network (ANN) has proven to be well suited for power curve modelling. It
has been shown that a multi-stage modelling techniques using multilayer perceptron with two layers of
neurons was able to reduce the level of both the absolute and random error in comparison with IEC
methods and other newly developed modelling techniques. This newly developed ANN modeling
technique also demonstrated its ability to simultaneously handle more than two parameters. Wind
turbine power curves with six parameters have been modelled successfully. The choice of the six pa-
rameters is crucial and has been selected amongst more than fifty parameters tested in term of variability
in differences between observed and predicted power output. Further input parameters could be added
as needed.

© 2015 Published by Elsevier Ltd.

1. Introduction

Wind power plant operators generally focus their efforts on two
main objectives: minimizing operational expenditure (OPEX) and
maximizing the revenues (through energy output) of their assets.
While the first objective is primarily a question of administrative
optimization, the second involves more technical fields of expertise
such as preventive, predictive (condition-based monitoring), and
corrective maintenance. In each of these processes, maximization
of energy outputs involves the use of power performance evalua-
tion tools followed by diagnostics and corrective actions. Therefore,
wind power plant operators require daily access to efficient power
performance evaluation methodologies. Methods with lower level
of errors will enable faster detection of wind turbines exhibiting
underperformance issues.

Recent efforts were mainly oriented toward the improvement of
actual power performance evaluations in awarranty context where
the focus was placed primarily on ensuring a high level of repeat-
ability between turbines not necessarily located in similar

environments. The IEC 61400-12-1 [1] is the mostly prescribed
method for power performance evaluation of wind turbines. At-
tempts using discrete [1e5], parametric [6,7], non-parametric
[7e9], or stochastic [10e12] models have also been developed in
this context. These methods have shown some difficulties in
incorporating multiple inputs (parameters) simultaneously. Expe-
riences have also shown that these methods are also inapplicable in
the day-to-day context of operators. This is due to the fact that the
stringent criteria's involve in a warranty context (i.e. meteorology
mast's location, topographical effects, obstacles, wakes, etc.) are
inapplicable to the vast majority of wind turbines that operators
need to manage.

In order to more appropriately address wind turbine operators'
needs, this work focused on the reduction of scatter for site-specific
wind turbine power curve evaluations (also known as Type A un-
certainty). Because this method is mainly based on nacelle
anemometry, it need less stringent criteria that the one specified in
the IEC 61400-12-1 standard. The following sections describe the
various steps that have been followed in the elaboration of Artificial
Neural Network (ANN) modeling technique using multiple pa-
rameters simultaneously. A comparison of these results with other
types of models is also provided herein.
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2. Wind turbine power curve modelling

Several attempts using, discrete, parametric, non-parametric, or
stochastic methods have been made to improve wind turbine po-
wer curve modelling. However, nearly all of these attempts were
conducted in a warranty context with the consequence that the
main focus was on improving the power curve repeatability inde-
pendently of site-specific conditions. The present study concerns
site-specific power curve modelling where the emphasis is placed
on the reduction of both the absolute and random errors. In this
context, the conditions for elaborating the power curve are there-
fore considerably less stringent. The next sections synthesize the
review of literature that has been completed on wind turbine po-
wer curve modelling.

2.1. Discrete methods

Discrete methods consist of modelling a continuous process
with discrete approximations. The IEC 61400-12-1 and IEC 61400-
12-2 standards [1,2] use this type of method. In these standards, all
wind speeds are discretized in 0.5 m/s bins. Power output is then
modelled according to these discrete inputs. In these power per-
formance evaluation techniques, wind speed at hub height and air
density are implicitly considered the only relevant input (inde-
pendent) variables; power is the output (dependant) variable.
Frandsen [4] and Albers [5], amongst others, mention that other
parameters could significantly affect the power curve evaluation if
not taken into account. With the objective of producing power
curves that are repeatable and independent of the turbulence in-
tensity characteristic, Kaiser [13] and Albers [14] propose alterna-
tive adjustment methodologies. Kaiser used the Taylor series
expansion in order to linearize the relationship between the power
output of a turbine and the incident turbulence intensity at hub
height. More recently, Albers proposed a turbulence intensity
normalisation algorithm. Experimental results [3,5,15e18] have
also demonstrated the impact of wind shear on the power perfor-
mance of wind turbines. Wagner [19], using higher-than-hub-
height towers, have demonstrated that using an increased num-
ber of wind speed measurement points significantly improves the
correlation between wind input and power output.

2.2. Parametric methods

Parametric models are built from a set of mathematical equa-
tions that include parameters that must be adapted through a set of
continuous data. Parametric methods generally use linear, non
linear, polynomial or differential equations to name a few. The
parameters present in these equations are generally determined
through standard regression methods like error minimisation and
maximum-likelihood. Numerical methods can also be used to
establish the parameter's value. The shape of the wind turbine
power curve has inspired some author in their choice of parametric
models. Sainz [6] compares the use of polynomial and exponential
parametric models to evaluate wind turbine power curves. Kusiak
[7], through genetic algorithm, also compares power curves with a
4-parameter logistic function.

2.3. Non-parametric methods

With the recent arrival of powerful database tools that allow the
archiving of tremendous amounts of data, newmodelling methods
have emerged. Instead of assuming a physical or analytical rela-
tionship between the input and output data, the non-parametric
methods establish a correlation based only on the data provided.
This is why these methods are called “learning methods”. In 2009,

Kusiak [7] studied learning method using data mining techniques
such as MLP, M5P tree, Random forest, Boosting tree and k-NN to
model power curves. He concluded that the k-NN method repre-
sented the method ensuring the highest precision. Li [20], Kusiak
[7], and Carolin [9] developed an ANN with the objective of fore-
casting the power output of wind power plant. Very few authors
have used ANN to model wind turbine power curve in the context
of power performance validation. To the author's knowledge, none
of them ever modelled a power curve with more than three inputs
simultaneously.

2.4. Stochastic methods

Anahua [21], Boettcher [22] and Gottschall [12] present several
papers related to the stochastic analysis of wind turbine power
output and wind speed. They use the Markov chain theory to
elaborate the power curve of wind turbines. The Markov chain
analyzes the dynamical behaviour of a system (wind turbine) with
respect to a stochastic signal or input (turbulent wind speed). This
method resulted in power curves that are independent of the tur-
bulence intensity level. While this method has the advantage to
enable a wind turbine power curve within a few days, it has the
disadvantage that no other parameter than wind speed and TI are
taken into account. This disadvantage makes these types of models
inapplicable in the long term operation context.

3. Database description

Data from two operational wind power plants located in Nordic
and complex environments were used for this research. An
advanced data acquisition system directly connected to the turbine
controllers was used to gather data over a period of approximately
one year from more than 140 wind turbines. Data from 80 m IEC
61400-12-1 meteorological masts (met masts) installed in prox-
imity to the tested turbines on each site have also been acquired.
Fig. 1 and Fig. 2 represent the general set-up of the two experi-
mental wind turbines used in this study.

For each turbine, over 100 parameters were archived, including
power, meteorological data, operational data, vibration, tempera-
ture of components, turbine status. For the met masts, meteoro-
logical parameters at different measurement levels (40 m, 50 m,
60 m, 70 m and 80 m) were acquired. Though the data were
recorded and logged at a high sampling frequency (1 Hz), the
standard 10-min averages were calculated and used in this work.

3.1. Data pre-processing

As the volume of collected data is substantial, errors caused by
sensors or the data acquisition system are possible. For example,
out-of-range values, missing data due to turbine availability and/or
electrical shut-down or corrupted data due to icing events are
possible incidents that would require the removal of recordings
from the data set. Multiple quality control algorithms were used
[23]. Additionally, a filtering technique similar to the one used by
Kusiak [7] was used to remove remaining outliers. Site-specific
adaptation of the statistic Tukey criteria [24] were implemented.

Furthermore, data corresponding to directional sectors prone to
wake effects on the tested turbines were not retained for analysis.
Figs. 1 and 2 illustrate the valid wind direction sectors in order to
avoid wake effect. These sectors werewidened compared to the IEC
61400-12-1 standard.

The low recovery rates (5.6% and 35.2%, see Table 1) are mainly
due to the removal of data that were not in the valid wind direction
sectors as defined in the norm IEC 61400-12-1. This is done in order
to remove all operating data corresponding to wake operation.
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