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a b s t r a c t

Recently the environmental impact of onshore wind farms is receiving major attention from both gov-
ernments and wind farm designers. As land is more extensively exploited for wind farms, it is more likely
for wind turbines to be in proximity with human dwellings, infrastructure (e.g. roads, transmission lines),
and natural habitats (e.g. rivers, lakes, forests). This proximity makes significant portions of land un-
usable for the designers, introducing a set of land-use constraints. In this study, we conduct a constrained
and continuous-variable multi-objective optimization that considers energy and noise as its objective
functions, based on Jensen's wake model and the ISO-9613-2 noise standard. A stochastic evolutionary
algorithm (NSGA-II) solves the optimization problem, while the land-use constraints are handled with
static and dynamic penalty functions. Results of this study illustrate the effect of constraint severity and
spatial distribution of unusable land on the trade-off between energy generation and noise production.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, electricity generation from wind energy has
shown a sustained growth all over the world. In 2012, 44.8 GW of
wind energy capacity was installed in the world, which brought the
total installed wind capacity to 282.5 GW [1]. This milestone made
wind energy account for 3% of world's electricity demand [2]. In
2013, the wind energy market continued to grow, with the United
States of America adding 12 GWof wind power generation capacity
(under construction), andwith Canada adding 1.6 GWof generation
capacity [2]. In the European Union, wind energy represented the
largest share of new installed capacity among all energy sources [3]
during 2013. These statistics indicate a strong global growth in
wind energy generation, increasing the associated market for
related products and services [2].

Notwithstanding these trends, wind energy still faces diffi-
culties for wide adoption. Recently, the health and environmental
impacts of onshore wind farms have become a matter of concern

for governments and wind farm designers. Although it is not
proven that the noise production of turbines has negative health
impact on human beings, a number of jurisdictions have estab-
lished regulations that limit noise emissions [4e6]. Besides the
potential health issues, extensive land exploitation for wind farms
increases their interference with natural habitats and causes
negative environmental impact [7]. This interference together with
the noise production of wind farms reduce the available land for
turbine sitting.

Wind farm design can be a lengthy and iterative process, in
which the designer has to maximize the energy generation or
revenue, while verifying compliance with environmental and
safety regulations or restrictions. Most of the researchers in this
area have strived to maximize energy or revenue of wind farms
[8,9]. However, their studies fail to elucidate the nature of the
energy-noise trade-off especially under severe land use constraints.
Furthermore, the current approaches are not able to investigate the
impact of the extent of land use constraints on the optimization
results. Thus, these approaches fail to generalize case-specific
layout optimization.

In this work, we study the energy-noise trade-off for the wind
farm layout optimization (WFLO) problem while considering a set
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of land use constraints. In other words, this work aims to maximize
the energy generation and minimize the noise production while
investigating the sensitivity of this trade-off to land use constraints.
To this end, the unconstrained multi-objective energy-noise opti-
mization carried out by Kwong et al. [10,11] is extended to include
land use constraints. The optimization is performed using a multi-
objective, continuous-variable Genetic Algorithm (GA) [12] based
on non-domination sorting (NSGA-II, [13]) and the constraints are
handled with penalty functions [14].

2. Literature review

In this section, we discuss previous studies that have proposed
models or algorithms for the WFLO problem and, due to our focus
on constrained wind farm optimization, we also discuss previous
work in constraint handling methods for evolutionary algorithms.

Regarding studies on WFLO problem, two main optimization
approaches have been applied successfully, namely (i) heuristics
and (ii) mathematical programming methods. First, optimization
heuristics have been the most commonly used approach, and both
stochastic and deterministic versions have been reported in the
literature. Methods such as GA and Particle Swarm Optimization
(PSO) [15] are the common stochastic heuristics used for solving
WFLO problem [8,9,16,17]. In addition, deterministic heuristics such
as Extended Pattern Search (EPS) of Du Pont and Cagan [18] are also
used in this context; however, they have not ever been as common
as stochastic methods. Most of the studies using heuristic methods
considered energy or cost as their objective function, while Şişbot
et al. [19] carried out a multi-objective energy-cost GA optimiza-
tion. Kwong et al. [10,11] considered noise as the second objective
function for the first time and solved the unconstrained problem
with continuous variable GA. Their study showed that there is a
trade-off between energy generation and noise production.

A significant portion of the literature on the WFLO problem has
focused on improving the optimization models by including more
realistic features of the wind farms. For instance, Kusiak and Song
[20] considered minimum turbine proximity constraints, and
enforced a closed wind farm boundary, these constraints were
converted to a second objective function and handled in a multi-
objective fashion. They showed that this multi-objective optimi-
zation maximizes energy and satisfies all the constraints by
minimizing constraint violation. R�ethor�e et al. [21] suggested a two
stage optimization model that used GA in the first stage and
gradient-based sequential linear programming in the second stage.
The second stage relied on an improved model that considered a
comprehensive cost function and a more detailed wind resource
distribution including more wind directions and speed bins.
Saavedra-Moreno et al. [22] improved their model by considering
the spatial distribution of wind speed instead of using a single
speed/direction wind distribution for the whole farm terrain.
Furthermore, Serrano-Gonz�alez et al. [23,24] modified their opti-
mization by taking infrastructure costs and wind data uncertainty
into account. Besides all these improvements in wind farm
modelling, the most important contribution of the most recent
studies with heuristic methods is the switch to continuous-variable
formulations [20,10,11,25e27]. This is an important step in reducing
the probability of converging to sub-optimal solutions caused by
the coarseness of the discretization approaches typically used in
the literature.

Formulations of the WFLO problem amenable for solution with
mathematical programming methods, such as mixed-integer pro-
gramming (MIP), have also been proposed. Donovan [28,29]
introduced MIP for solving the WFLO problem. Fagerfj€all [30]
used traditional branch-and-bound together with a heuristic to
improve the performance of the optimization algorithm. Although

MIP solvers are widely available in operation research software
packages, they all have limitations solving non-linear, non-convex
problems such as WFLO. Both Donovan and Fagerfj€all tried to
address this problem by simplifying their wake model at the
expense of losing accuracy. To address this issue, Archer et al. [31]
improved the simplified wake model by introducing a wind inter-
ference coefficient, while Turner et al. [32] suggestedmore accurate
linear and quadratic wakemodels that can be solved byMIP solvers.
However, the accuracy problem was resolved by Zhang et al. [33],
who proposed the first constraint programming (CP) and MIP
models that incorporated the non-linearity of the problem. Similar
to the WFLO work using heuristics, proponents of MIP models have
also neglected the land use constraints associated with practical
instances of the WFLO problem. However, the main limitation of
MIP models is their dependence on coarsely discretized domains.
For example, even in recent MIP studies [32,33], the wind farm
domain is typically discretized into 100e400 potential turbine lo-
cations, with memory requirements and solution times increasing
dramatically for finer discretizations.

Finally, from the common constraints encountered by wind
farm designers, those related with land usage regulations have not
received enough attention from researchers. However, there are a
few exceptions that considered land-related parameters for their
optimization. Chowdhury et al. [25e27] included the impact of land
configuration and turbine selection in their study and used PSO for
optimization. Theyminimized cost of energy and represented it as a
function of land orientation and aspect ratio. Chen et al. [34]
incorporated the participation rates of land owners in their cost
function, which was minimized by GA. They showed that land
owners remittances account for approximately 10 % of the wind
farm's operating cost. In spite of these studies, the environmental/
regulatory land use constraints such as setbacks from rivers, lakes,
roads and human dwellings, have been neglected in previous work
and are a matter of concern in our study.

Hence, we close our review of the literature by discussing
previous developments in constraint handling for evolutionary
optimization algorithms, which is our method of choice in the
present work. Constraint handling approaches for multi-objective
optimization with evolutionary algorithms have been based on (i)
constrained-domination, (ii) non-domination ranking, or (iii)
penalty functions. Firstly, on the constrained-domination side,
Fonseca et al. [35] modified the binary tournament operation for
parent selection in order to handle the constraints, introducing the
concept of constraint domination, i.e. an extended Pareto domi-
nance criterion that also considers constraint violations. Deb et al.
[13] also used the same approach as Fonseca's with a slight dif-
ference in their constrained domination definition. Secondly, Ray
et al. [36] introduced an alternative approach for constraint
handling, in which they defined three different non-domination
rankings based on the objective functions, constraints, and com-
bined objectives and constraints. The solutions with higher ranks
are chosen for next generation with the priority given to the so-
lutions with high ranks regarding the third ranking. Finally, pen-
alty functions have remained the most widely used constraint
handling approach in the context of evolutionary algorithms. The
penalty function approach recasts the problem as an uncon-
strained one by adding (if minimization, subtracting otherwise) a
function of constraint violation to the objective functions. As a
result, penalty functions are generally applicable to constrained
optimization problems, regardless of the optimization method
used to solve the unconstrained problem. Here, we shall use the
penalty function approach, in order to take advantage of its simple
implementation and general applicability; the latter can be
beneficial for future studies that may use alternative optimization
methods.
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