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a b s t r a c t

In order to perform predictions of a photovoltaic (PV) system power production, a neural network ar-
chitecture system using the Nonlinear Autoregressive with eXogenous inputs (NARX) model is imple-
mented using not only local meteorological data but also measurements of neighbouring PV systems as
inputs. Input configurations are compared to assess the effects of the different inputs. The added value of
the information of the neighbouring PV systems has demonstrated to further improve the accuracy of
predictions for both winter and summer seasons. Additionally, forecasts up to 1 month are tested and
compared with a persistence model. Normalized root mean square errors (nRMSE) ranged between 9%
and 25%, with the NARX model clearly outperforming the persistence model for forecast horizons greater
than 15 min.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The challenge for electrical grid operators is to continuously
synchronize electrical energy demand and supply. As global de-
mand for renewable energy is increasing, the economic and tech-
nical issues of photovoltaic (PV) solar power penetrations into the
power grid must be addressed. Especially since natural variability
of the solar resource, seasonal deviations in production and the
high cost of energy storage raises concerns regarding reliability and
feasibility of solar power systems. This is due to the fact that solar
energy is highly dependent on weather conditions including cloud
structure and day/night cycles. Clouds can cause significant ramps
in solar insolation and PV output, which may be difficult to handle
by the grid operator. Therefore, integration of electricity produced
by solar power systems requires accurate solar energy forecasts.

Solar energy forecasts allow grid operators to adapt the load in
order to optimize the energy transport, allocate the needed balance
energy from other sources if no solar energy is available and plan
maintenance activities at the production sites. Accurate solar
forecasting methods improve the quality of the energy delivered to
the grid and reduce the additional cost associated with weather

dependency. The combination of these two factors has been the
main motivation behind considerable research activities in solar
forecasting.

Linear models, such as BoxeJenkins and autoregressive inte-
grated moving average (ARIMA) type models are regularly used to
generate forecasts. They assume linear correlation structures
among the time series values and thus no nonlinear patterns can be
captured Zhang [30]. Subsequently, Reikard [22], Paoli et al. [25],
and Pedro & Coimbra [23] used nonlinear models that show more
flexibility in capturing the data underlying characteristics and
those nonlinear models outperformed linear models. Moreover, at
shorter time interval (less than 1 h), short-term patterns dominate
and Artificial Neural Networks (ANN, see Section 3 for definitions
and properties) demonstrated good results in solar forecasting
Diagne et al. [5].

In Ref. [26] ANN were used to perform one-step ahead fore-
casting of hourly values of global irradiance and they revealed that
those results outperform linear models results. They also compared
various models in terms of error and training time and found that
the LevenbergeMarquardt algorithm achieved the best
performance.

In Ref. [29] a comparative study between different ANN models
was conducted to predict insolation 1-day ahead, in which the
recurrent neural network outperformed the feedforward neural* Corresponding author.
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network. Additionally, in Ref. [13] the researchers implemented a
multilayer neural network for half hour cloudiness forecasting and
considered it an important tool for the estimation of cloudiness
affecting solar radiation.

ANN forecasting models for hourly solar irradiation for times of
up to 6 days ahead were tested in Refs. [14]; concluding that the
developed intelligent models outperformed satellite-based models.
Moreover, an input selection scheme was used and results revealed
that models with slightly larger sets of inputs generally perform
better for same-day and 1-day ahead forecasts.

In Ref. [4] forecasting the daily solar radiationwith two dynamic
artificial neural networks (Feedforward Time Delay Neural Network
and Nonlinear Autoregressive with eXogenous inputs (NARX)) was
proposed. Both models had a satisfactory performance, facilitating
energy management of solar systems when storage systems are
adopted.

Several studies that compare ANN with other simpler time se-
ries techniques (AR, ARIMA, etc.) have been conducted in the past.
In Ref. [10] different solar forecasting techniques' performances are
assessed based upon a forecasting skill given as

s ¼ 1� RMSE
RMSEp

(1)

where RMSEp denotes the root mean square error of the persis-
tence model. Thus, a forecasting skill closer to 1 shows that the
model being assessed has significantly improved the accuracy
relatively to the persistence model.

Bacher et al. [1] compare an AR and ARX model for short-term
and medium-term solar forecasting and conclude that the most
important input is the lagged PV values for short-term horizon (2 h)
and, for long horizon NWP models become more important. The
authors showed a forecasting skill s of 0.27 and 0.34 for a horizon of
1 he6 h for the AR and ARX model, respectively. Paoli et al. [22]
presented a forecasting skill s of 0.19 and 0.20 for AR and ANN
respectively, for one day ahead. The forecasting skill in Ref. [16] for
intra-day forecasts was 0.16 and 0.17 for an AR and ANN model,
respectively; for day ahead, the forecasting skill was similar varying
between 0.18 and 0.20 for the AR and ANN model respectively.
Voyant et al. [28] suggests that an ANNmodel for daily forecasts on
6months-cloudy period improves the power production prediction
by 9% and 1% relatively to the persistence and ARMA model,
respectively. Pedro and Coimbra [23] also presented a comparison
between ARIMA and ANN to predict 1 h and 2 h average power
output; the forecasting skill for the 1 h forecasts were 0.02 and 0.18,
and for the 2 h forecasts were 0.10 and 0.11, for the ARIMA and ANN
model respectively; thus showing neural networks have greater
potential for short-term forecasting.

The present work improves on A.G.R. Vaz [27] and uses an ANN
model to capture the short-term (15 min) ramping patterns caused
by cloud formations and to forecast a PV system power output up to
1-month ahead. Moreover, using different input combinations, we
assess whether or not solar power forecasts can be improved by
knowing beforehand the power output of other neighbouring (few
km distance) grid-connected PV systems and meteorological in-
formation. Additionally, the forecasting accuracy of the ANN is
compared to the persistencemodel. In Section 3, principles of ANNs
are briefly discussed, and in Section 4 the used methodology is
presented.

2. Clear sky persistence model

The persistence model is a simple forecasting model that re-
quires knowledge of clear sky irradiance. Usually, this simple
forecasting tool is very accurate for very short-time horizons and

for low irradiance variability. The model has the clear sky condi-
tions persist for the next time-step and meets the definition of
Marquez and Coimbra [15] applied to the power production of a PV
system,

bk*ðt þ DtÞ ¼ bk*ðtÞ ¼ PVPPðtÞmeasured
PVPPðtÞclr

(2)

PVPPðt þ DtÞ ¼ bk*ðt þ DtÞ � PVPPðt þ DtÞclr (3)

where bk* is defined as clear-sky index, t denotes the time instant,
PVPP(t) is the measured photovoltaic power production and
PVPP(t)clr is the photovoltaic power production for clear sky con-
ditions, calculated according to Ineichen and Perez [9]. Other clear
sky models are possible and Gueymard [7] is suggested for thor-
ough analyses of different models.

3. Artificial neural networks

3.1. Definitions and properties

In its most general form, an ANN is a machine that models a task
or function of interest, performing useful computation through a
process of learning. In fact, the artificial neural network derives its
computing power through its massively parallel distributed struc-
ture and its ability to learn and generalize, which means finding
reasonable outputs whenever inputs are not encountered during
training (learning) [8].

The ANN consists of simple processing units, the neuron, and
directed, weighted connections between those neurons. The inputs
channels have an associated weight, such that the incoming in-
formation xi is multiplied by a corresponding weight wi. The
network input is the result of the so-called propagation function.
Here, the strength of a connection between two neurons i and j is a
connecting weight wij. Experimental knowledge, acquired by the
network through a learning process, is stored by massively inter-
connecting these units (synaptic weights). These connecting
weights can be inhibitory or excitatory and by being connected
with the neurons, data are transferred.

The output is a function of the particular activation function
chosen and a possible bias. The latter is similar to a weight, albeit it
has a constant input of 1. This bias term is used by the neuron to
generate an output signal in the absence of input signals. Fig. 1 il-
lustrates the nonlinear model of a neuron [8].

The transfer function or activation function controls the
amplitude of the output of the neuron and is based on the neuron
reactions to the input values and depends on the level of activity of
the neurons (activation state). Essentially, neurons are activated

Fig. 1. Nonlinear model of a neuron (Redrawn from Ref. [8]).
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