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a b s t r a c t

Large amounts of new wind power are currently under construction or planning in many countries. The
constantly increasing percentage of wind power in the electricity generation mix has to be taken into
consideration when planning power systems. This paper introduces a Monte Carlo simulation based
methodology that can be used to assess the effects (e.g. need for new transmission lines, reserves, wind
curtailment or demand side management) of large amounts of existing and planned wind power gen-
eration on the power system. The presented methodology is able to assess new wind power scenarios
spread over a wide geographical area, comprising numerous existing and planned wind generation lo-
cations. The Monte Carlo simulation results are verified against measured aggregated wind power
generation in Finland from 2008 to 2014. In addition, case studies of future scenarios with 232 individual
wind generation locations are presented to show the applicability of the methodology as a tool in power
system planning.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The amount of wind power generation has been increasing
rapidly and new wind farms are under construction or in planning
in several countries. Therefore, as the amount of wind power in the
generation mix rises, it becomes increasingly vital to assess the
contemporaneous generation from a large number of wind gener-
ation locations covering large geographical areas. To be able to
evaluate future scenarios, locations where no wind speed or wind
power measurements exist (non-measured locations) have to be
analyzed. However, existing methodologies that assess the
contemporaneous generation of non-measured locations are
limited.

This paper adds to the literature by presenting a Monte Carlo
simulation based methodology to analyze future wind generation
scenarios with a large number of non-measured locations. This
methodology can be used as a flexible tool for power system
planners to assess the impact of different wind power generation

scenarios, e.g. the need for reserves, new transmission lines, wind
curtailment or demand side management. The methodology is able
to investigate the impact and feasibility of several generation lo-
cations or even large systems in multiple countries.

A major part of the presented methodology involves Monte
Carlo based simulations and probability integral transformations.
Time series models are created to enable the implementation of
Monte Carlo simulations in the assessment of wind power gener-
ation in multiple locations. These simulations have also been used
with wind power generation in Ref. [1e4]. Probability integral
transformations are employed to separate the analysis of the
marginal distributions of wind speeds or wind power in individual
generation locations from the analysis of the dependence struc-
tures of multiple locations [1e4]. We use a similar approach to
separate the wind speed distributions of the individual locations
from their spatial and temporal dependencies.

To simulate wind speed time series, a vector autoregressive
(VAR) model can be employed [4e7]. The VAR model assesses both
temporal and spatial dependencies between all locations [4].
However, as shown in Refs. [4], new non-measured locations
cannot be straightforwardly added to the model. Therefore, a VAR
model was not considered a feasible approach. Thus, we use a time
series model that follows the basic approach presented in
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Refs. [4,8]: individual univariate time series simulated by autore-
gressive (AR) models are transformed to multivariate cross-
correlated time series with the Cholesky decomposition of a cor-
relation matrix. This combination is referred to as the ARC model
[4]. However, the ARC model presented in Ref. [4] assumes that the
error terms of the model are normally distributed. In this paper, we
have improved the model and present a refined ARC model with t-
distributed error terms. This extended ARC model (with t-distrib-
uted error terms) allows a better analysis of the volatility of the
wind generation, as the error terms of the AR models, which model
the variability, are modeled more accurately.

The monthly changing diurnal variations are assessed by
removing the diurnal variations from the data before estimation
and adding them back in simulation, as was done in Refs. [4,5].

Two distributions are used for the marginal distributions: the
Weibull distribution and a piecewise semi-parametric distribution
with a non-parametric density estimator with Gaussian kernels for
the majority of the data and a generalized Pareto distribution for
the upper tail [4,9e11]. This piecewise distribution is referred as the
KGP distribution.

The marginal distributions are used to transform the measured
wind speed data to data with normally distributed marginal dis-
tributions to be used as an input to the ARC model with t-distrib-
uted error terms. This combination is referred to as the transformed
ARC model with t-distributed error terms. The ARC model and the
marginal distributions are both fitted to the measured wind speed
data. The transformed ARC model with t-distributed error terms
can analyze newwind generation locations without measured data
and can be utilized to simulate hundreds or even thousands of
generation locations.

Wind speed time series are simulated for each location with the
ARC model with t-distributed error terms. A turbine model is
specified for each location and is used to transform the simulated
wind speed time series to a wind power time series through a
piecewise power curve specified by turbine specific parameters. A
third degree function is considered for the non-linear part of the
power curve [12]. The presented methodology also assesses the
wake effect inside wind farms [13], the changing installed aggre-
gate generation capacity and the availability of the turbines. The
presentedmodel (built from individual locations) is verified against
aggregated wind power generation data in Finland from 2008 to
2014. Case studies comprising six future wind power generation
scenarios and an evaluation of the European Wind Energy Associ-
ation (EWEA) high 2020 target scenario [14] are presented to
illustrate the applicability of the proposed methodology.

2. The wind speed model

This section presents the data used to estimate and verify the
model and considers the marginal distributions, introduces the
transformed ARC model with t-distributed error terms and shows
how non-measured wind generation locations are added to the
model.

2.1. The data

Low and high altitude wind speed data, and wind power gen-
eration and capacity data are used in the analyses in this paper. The
low altitude wind speed data is from 19 locations in Finland. The
measurement data is hourly and the measurement height is
approximately 15 m above the surrounding ground level. The data
has been measured in all of the 19 locations, from July 2008 to July
2011. The low altitude wind speed data are obtained from the
Finnish Meteorological Institute.

The high altitude wind speed data are from 12 different loca-
tions in Finland and the time resolution of the measurement data is
1 h. Seven of the 12 locations are tower measurements and the
measurement height varies from location to location, from 74 m to
120 m. Five of the measurements were made with SODAR tech-
nology and in these cases measurements from 75, 100, 125 and
150 m above the surrounding ground level are considered. The
measurement lengths and dates vary between the different high
altitude locations. The high altitude wind speed data are obtained
from the Finnish Meteorological Institute.

For both high and low altitude locations the wind speed data is
denoted as yt ¼ [y1,t, …,yk,t]0, where t ¼ 1, …,T is time and k is the
number of locations.

The wind power generation and capacity data from Finland are
from January 2008 to January 2014. The generation data are
aggregated from all wind generators in Finland. The resolution of
the measured aggregate generation data is hourly. Both the gen-
eration and capacity data are obtained from the Finnish Energy
Industries.

The Finnish Wind Atlas database [15] is used to obtain the
Weibull parameters for the marginal distributions of the non-
measured locations. As the Finnish Wind Atlas provides Weibull
parameters for different coordinates and altitudes, the ARC model
can be applied to different geographical locations and all realistic
hub heights of the turbines. The terrain roughness and other
geographical factors are already considered in the Weibull param-
eters, as the FinnishWind Atlas utilizes geographical information in
the estimation of the Weibull parameters.

2.2. The marginal distributions

This paper uses two different distributions as marginal distri-
butions for wind speeds. The KGP distribution consists of two parts,
as presented in Ref. [4]. First, a non-parametric density estimator
with Gaussian kernels is fitted for the wind speed data below the
highest 10% of the measurements. Second, the distribution of the
highest 10% of the measured wind speeds is fitted with a general-
ized Pareto distribution [4,9e11].

The KGP distribution is a very flexible distribution, but the
non-parametric density estimator cannot be used in locations
without measurement data. Accordingly, KGP distributions are
only used for the measured locations employed in the estimation
of the model. The estimated KGP distributions were capable of
depicting the measured data more accurately than, or at least as
accurately as, the Weibull distributions for all the measured lo-
cations [4].

The Weibull parameters for the new non-measured locations,
however, are available from various databases, such as the
Finnish Meteorological Institute's Finnish Wind Atlas [15]. Thus
the Weibull distribution, widely used to describe wind speed
distributions, can be used with the non-measured locations
[12,16].

2.3. The transformed ARC model with t-distributed error terms

This section introduces the transformed ARC model with t-
distributed error terms and the estimation process of the model.
The flowchart of the estimation is presented in Fig. 1. First, the
marginal distributions are estimated for the measured wind speed
data yt and then the estimated marginal distributions are trans-
formed to the standard normal. The normality of the data is not
requisite with AR models but it is desirable [5].

The probability integral transformation from wind speeds to
data with normally distributed marginal distributions is
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