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ators by a severe degree.

In this article we propose a new wind power forecasting model that does not focus on providing the most
precise forecasts, but minimizes the financial loss of forecasting impreciseness. We show that the loss
function is asymmetric and therefore account for asymmetry during the estimation stage of our model.
The new model's forecasts are compared to two state-of-the-Art models and we are able to show that the
new model can increase the financial profit for power producers, power traders and/or network oper-
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1. Introduction

Many electricity pools such as NASDAQ OMX Commodities
(formerly Nord Pool OMX Commodities), APX, EEX or UKPX
feature rather similar rules on energy trading: Traders (sellers as
well as buyers) first place daily bids on their respective desired
quantities. At a certain point in time, these bids are automatically
matched and contracted (clearing). Afterwards, the seller is obli-
gated to deliver the contracted energy amount. Though there are
slight differences in the details on power trading from pool to
pool, spot market mechanisms are comparable. [1] provide more
details on the respective rules of different spot market trading
places.

As there is a time frame of up to 36 h between bidding and
contracting, both market sides require forecasts of the energy that is
to be traded. These forecasts provide only limited precision, so un-
certainty exists: Energy is consumed at that point in time at which it
is produced, there are hardly any methods to save the energy and
consume it later. From the sellers' perspective, this results in a loss
from the forecasting impreciseness: If the seller produces and de-
livers less energy than contracted (i.e. the forecast imposed an
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overestimation), the buyer needs to cover his demand from the
intraday market. If there was an underestimation (i.e. the actual
amount of energy produced is larger than forecasted), the producer
needs to sell the non-contracted power at the intraday market.

In times of unexpectedly low power production (i.e. whenever
the seller fails to deliver the full contracted amount of energy),
the producer has to refund the fraction of contracted power that
is not delivered, sometimes in addition to a fine. Also, buying
power from the intraday market and delivering it to the contract
partner is not an option in most of these times because prices
at the intraday market are likely to be up, then. As a conse-
quence, there is a real economic loss to the seller. In times of
unexpectedly high power production however, the seller needs
to sell the non-contracted fraction of produced power at the
intraday market. Prices there are likely to be low at these times,
much lower than the contract price. So there is an imputed loss:
If the forecast had been more precise (i.e. if the seller had known
the true amount of produced power), that power could have
been contracted and the profit for the seller would have been
larger.

The economic impact of these two-sided losses is asymmetric.
[2] define a piecewise linear loss function with weight v € [0,1] for
underestimation and 1-vy for overestimation. They find an
empirical value of y=0.73, stating that underestimation is to be
emphasized. [3] concur and find similar orders of magnitude for
their asymmetry measures. Also, [4] defines a comparable type of
asymmetry in his static model.
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Fig. 1. Theoretical asymmetry of loss. Losses increase more steeply in the positive area
of errors, i.e. for underestimation forecasts.

Table 1
Descriptive statistics for Turbines A to D, time frame October 31, 2010 to November
06, 2012.

Wind speed (m/s) Power (kW) Wind direction (°)

Turbine A

Min 04 -19.0 5.0
Median 4.9 123.0 205.0
Mean 5.1 217.8 184.4
Max 18.0 1532.0 353.0
Variance 5.89 74998.72 -
Turbine B

Min 0.4 -19.0 20
Median 52 124.0 218.0
Mean 5.3 2313 194.2
Max 18.6 1493.0 355.0
Variance 6.46 85909.22 -
Turbine C

Min 0.4 -18.0 5.0
Median 52 127.0 213.0
Mean 53 230.6 192.5
Max 19.0 1542.0 355.0
Variance 6.22 85466.88 -
Turbine D

Min 0.4 -18.0 3.0
Median 5.1 124.0 199.0
Mean 52 225.0 1834
Max 19.3 1515.0 357.0
Variance 5.96 82676.63 -

Longer term forecasting (24 h and beyond) is usually performed
by physics/meteorology based models as discussed by, e.g., [5].
However, for short to medium term forecasting, stochastic models
have prevailed. Literature holds a wide range of stochastic fore-
casting models. There are point forecasting models, probabilistic
forecasting models and even density forecasting models. [6] pro-
vide an overview, also see the references therein. One of the most
acknowledged models is the Wind Power Prediction Tool (WPPT)
by Ref. [7]. The basic idea is to map numerical weather predictions
(NWP), i.e. wind speed forecasts, to power production. The model
captures diurnal periodicity via a Fourier series, but has its short-
comings because it is a linear model, does not utilize wind direction

(which has proven to be an important predictor) as an explanatory
variable and does not take seasonality into account. Several ap-
proaches to generalize the model have been proposed, for instance,
[8] suggest the nonlinear generalized WPPT model (GWPPT) model
that exploits wind direction and also utilizes both-sided censoring
of the data range, since there is a pre-determined power interval
known for each turbine. [9] provide a thorough comparative study
on GWPPT. [10] pursues a similar approach at modeling both-sided
censored data.

However, all of these models focus on the most precise forecast,
i.e. seek for the lowest prediction error as measured by, e.g., RMSE
or MAE (Root Mean Squared Error, Mean Absolute Error, cf. [11]).
During the prediction stage, asymmetric losses are ignored. [12]
account for asymmetry during wind speed prediction, but not
during the second stage, the wind power forecast. So far, no
research had been carried out trying to respect asymmetric losses
during wind power prediction directly. We take GWPPT and expand
the estimation by an asymmetric penalty term to acquire forecasts
that are not necessarily the most precise ones per se. That is, we do
not minimize forecasting errors, but we maximize the economic
profit that comes out of these forecasts. This leads to an intentional
systematic bias in the forecasts that represents the asymmetry. We
are able to show that these maximum-profit-forecasts generate
significantly larger profits than their unbiased and consistent
benchmark counterparts (GWPPT).

The paper is structured as follows: Section 2 presents the pro-
posed model. In Section 3 we discuss in-sample properties, run a
sensitivity analysis and evaluate the statistical features of the
model. Section 4 sheds light on out-of-sample results and measures
the financial gain of our model. Section 5 concludes.

2. Model proposition

GWPPT forecasts power k periods ahead using the model
specification
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where p; is power produced at time t, we_r is wind speed at time t
given at time t — k, v is wind direction at time t, and d; is time of day
for observation t. The Fourier series captures diurnal periodicity, as
data is provided at a frequency of ten minutes (=144 observations
per day). p; is modeled as a both-sided censored feature, i.e.

I, pr<li
pr=4q pi, pre(lu) (2)
u, p;>u.

I and u are the lower and upper censoring points, i.e. they deter-
mine the ex ante known power range of the turbine investigated.
The model's parameters are then estimated using the maximum
likelihood (ML) based generalized Tobit model by Ref. [13].[4] ob-
serves actual trading at Nord Pool OMX Commodities and, basically,
constructs the loss function
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