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a b s t r a c t

Atmospheric disturbance is a complex nonlinear process. The Lorenz system was seen as a classical
model to reveal essential characteristics of nonlinear systems. It has further improved people's under-
standing of the evolution of the climate system. Different from traditional studies working on improving
the numerical methods for wind prediction, dynamic characteristics of the atmospheric system are fully
considered here. This paper proposed the concept of the Lorenz Comprehensive Disturbance Flow (LCDF)
and defined the perturbation formula for wind prediction. The Lorenz disturbance has significant in-
fluence onwind forecasting, which is proved by using wind data from the Sotavento wind farm. That is to
say, the change process of atmospheric motion around the wind farm is more ideally described based on
the Lorenz system. This research has important theoretical value in developing nonlinear systems and
plays a great role on wind prediction and wind resource exploitation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Full use of renewable energy is an effective solution for the
energy crisis and push for environmental protection at present.
Wind power is one of the most potential and popular renewable
resources [1]. By 2050, wind energy will be technically feasible to
possess the largest share in energy systems and the installed ca-
pacities would range from 18 TW to 24 TW [2]. Wind power gen-
eration has greatly promoted the development of the wind energy
industry. At present, uncertainty of wind resources is the major
challenge of integrating wind power into electric systems. It is
highly important to study and develop high-precision wind speed
and power forecasting methods. Wind speed prediction is espe-
cially primary and critical [3e5]. Currently, wind prediction
models, according to different modeling methods, are usually
divided into physical models, statistical models, artificial intelli-
gence, and hybrid models [6e8].

Inequality of solar heating drives the atmosphere to move.
During the movement, heat andmomentum transportations would
invite certain nonlinear factors into atmospheric motions. Wind
forming is a typical nonlinear process [9]. This paper fully

considered the nonlinear dynamics of the atmosphere system and
adopted the Lorenz system as an atmospheric disturbance model.
Then, a novel short-termwind forecasting model named the Lorenz
Disturbance-Wavelet Neural Network (LDWNN) was proposed. In
this research, the LDWNN model mixed the traditional physical
model and the artificial neural network in the optimal way. This
model not only could grasp the seasonal variation rule of wind
speed, but also took the atmospheric disturbance effect into ac-
count. Different perturbation quantities were adopted according to
seasonal characteristics of wind speed.

This paper is organized as follows: Section 2 introduces the basic
theory of the Lorenz system and the other two Lorenz-like systems;
Section 3 is divided into three parts: definition of the Lorenz
comprehensive disturbance flow, modeling process of the LDWNN
model, and description of wind speed data; Section 4 presents the
main prediction results with relevant analysis; Another example for
validation is shown in Section 5; Some unresolved issues and
possible explanations are discussed in Section 6; Section 7 con-
cludes this paper.

2. The Lorenz system

Almost all of the atmospheric motions were derived from con-
vections. B. Saltzman's seven-variable fluid convection model
perfectly described the evolution of convective motion [10]. The
simulation was limited to a parallel-layer with a fixed height, and
the two layers were maintained at a constant temperature
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difference. The fluid developed from a small perturbation to finite-
amplitude convection. The governing equations can be expressed
as follows [10,11]
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where j denotes stream function in the two-dimensional plane, q
denotes the temperature departure from equilibrium state, and
constants g, 2, y, and k separately denote the acceleration of gravity,
the coefficient of volume expansion, the kinematic viscosity, and
the coefficient of thermal diffusivity.

The Lorenz system was then extracted from model (1) and
regarded as the first mathematical-physical model to exhibit
chaotic behaviors [10e13]. Solutions of the Lorenz system not only
correctly exhibited the evolutions of Equation (1), but also pre-
sented features of deterministic nonperiodic flow in a simplest way.
The Lorenz equation is given by Refs. [11,13]
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where x is proportional to convection intensity, y is proportional to
the temperature difference between ascending and descending
currents, z is proportional to the temperature departure from
linearity, s is the Prandtl number, r is the Rayleigh number, and b is
related to the region of microclimate.

As a meteorologist, Saltzman had simulated the convective
motion in liquid rather than in air. Thus the Prandtl number s in
liquid was selected to be 10.0. Following Saltzman and Lorenz [11],
b was chosen as 8/3, and the Rayleigh number r was variable. The
critical Rayleigh number was obtained through analyzing the sta-
bility of the equilibrium state of the Lorenz system, and was used to
distinguish different forms of air motions, shown in Table 1 [13].

The famous Reynolds experiment provided an intuitive
description of turbulent motion by adopting a stainingmethod [14].
Lorenz assumed Equation (2) to be an atmospheric convection
model and observed its evolution through numerical simulations.
He discovered that a deterministic system could perform a non-
periodic status in the simplest manner. But the Lorenz system
was not able to perfectly simulate solutions of Equation (1), espe-
cially when considering the impact of extreme truncation caused
by the strong convection [11]. The two models were slightly
different. In fact, model (1) described fluid convection heated and
driven from below. Lorenz studied atmosphere motion driven by
horizontal temperature difference.

Large amounts of scholars were devoted to studying the basic
theories of the Lorenz system, such as the nonperiodic nature,
bifurcation behavior, and the way to chaos. Chaos was no longer a
topic avoided by people. On the contrary, it was sometimes
necessary to strengthen or even generate chaos on purpose in some
fields [15]. Hence, some other classical Lorenz-like systems were
proposed. The Chen system (1999) [16] and Lü system (2002) [17]
were the top two famous Lorenz-like systems at the time. They
were proposed under the guidelines of Vanecek and Celikovsky

[18]. The Lorenz system, Chen system and Lü system had similar
basic properties: (1) Third-order quadratic autonomous equations
and three equilibrium points. (2) Symmetric solutions about z axis.
(3) Dissipation systems and existence of attractors. (4) Similar to-
pological properties and bifurcation diagrams. To facilitate the
study and application, these three systems were integrated into a
unified system as the following two forms: the generalized Lorenz
system introduced in the literature [19,20] and the single-variable
Lorenz system families in the literature [15].

3. LDWNN short-term wind speed prediction model

3.1. Lorenz comprehensive disturbance flow

Seen from Table 1, the Lorenz system is able to present different
motion states by taking appropriate values of r. Random turbulent
perturbation in the atmospheric system usually happens in the
following two situations: (1) The air and the surface may undergo
different levels of friction due to terrain differences, which were
very likely to yield turbulence. (2) Fluctuations in temperature or
atmospheric density may result in vertical movement of air masses,
i.e. air convection or turbulence.

The solutions of Equation (2) provided a series of disturbance
data, which are essential to establish the LDWNNmodel. Let (0,1,1),
a small deviation from the equilibrium state, be the initial condi-
tion. The parameters are taken as s¼ 10, b¼ 8/3, r¼ 28. Fig. 1
intuitively depicts nonperiodic features of the evolution of the
Lorenz system. The randomness of Lorenz equations' solutions is
the theoretical support to extract and use Lorenz disturbance. Ac-
cording to the classification in Table 1, the Lorenz system exhibited
nonperiodic states when r¼ 28. Fig. 1 also provides the ranges and
changing rules of the three perturbation variables x,y,z.

Irregular turbulence belonged to a stochastic process [14]. All
the turbulent motion states were regarded as sample space U. Then
the three-dimensional perturbation variable was defined by the
mapping p(x,y,z), which denotes fluid motion state, given by

pðx; y; zÞ : U/R3: (3)

Wind is a two-dimensional vector, wind speed is a real number,
and the perturbation variable is a three-dimensional vector. In this
paper, a linear perturbation model was adopted. The first step was

Table 1
The actual fluid motions presented by Lorenz system under conditions of s ¼ 10, b¼ 8/3 and variable r.

r 0< r< 1 1< r< 24.74 r> 24.74

Actual fluid motion Heat conduction Regular convection Irregular turbulent motion

Fig. 1. Subgraphs (a), (b), and (c) represent time series of variables x,y,z, respectively, in
the Lorenz convection model. Each sequence extends 1017 time units.
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