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a b s t r a c t

Time-resolved characterization of solar irradiance at the ground level is a critical element in solar energy
analysis. Siting of nodes in a network of solar irradiance monitoring stations (MS) is a multi-faceted
problem that directly affects the determination of the solar resource and its spatio-temporal vari-
ability. The present work proposes an objective framework to optimize the deployment of solar MS over
a sub-continental region. There are two main components in the proposed methodology. The first em-
ploys cluster analysis using the affinity propagation algorithm, to select the optimal number of clusters
(regions with coherent solar microclimates) upon internal coherence criteria. The second component
employs stochastic prediction and validation, through the use of a Bayesian maximum entropy method,
and selects the optimal MS configuration, according to geostatistical criteria, among the solutions rec-
ommended by the cluster analysis. We apply this two-pronged methodology to determine clusters and
optimal locations for global horizontal irradiance monitoring across the state of California. In this proof-
of-concept study, 3 disparate MS configurations are examined within the cluster partition. The subse-
quent geostatistical analysis indicates that all configurations rank almost equally well based on different
statistical error measures. The optimal configuration can be singled out depending on desired criteria of
choice.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ground-based solar irradiance monitoring stations (MS) are the
most reliable source to provide accurate assessment of ground solar
radiation. Ground-based monitoring networks have been installed
throughout the world for different purposes, such as the Baseline
Surface Radiation Network [1], the European Solar Radiation Atlas
[2], the California Irrigation Management Information System
(CIMIS). Common limitations in such networks are (i) the limited
spatial coverage compared to satellite modeled irradiance data in
high spatial resolution gridded domains, and (ii) the lack of prior
knowledge regarding the MS spatial representativeness that could
enable the development of operational plans about MS installation
locations. Traditional network design analysis relies mainly on to-
pological design to determine locations for MS.

In recent years, advanced data mining methods (e.g., cluster
analysis) have provided insight on the coherence of spatial groups.
This feature has helped clustering methods find application in
designing monitoring station networks; see, e.g., [3]. At the same
time, such methods often require a relatively large number of ob-
servations, which typically exceeds the number of monitoring
stations within a region. Geophysical clustering methods can be
enhanced substantially by remote sensing, which provides exten-
sive attribute coverage in increasingly detailed spatial and temporal
resolutions. A shortcoming of satellite data is the relatively low
accuracy and spatio-temporal resolution levels. Most radiation
models from remote sensing depend strongly on calibration sites
and dynamic atmospheric parameters; for example, satellite data of
global horizontal irradiance (GHI) and direct normal irradiance
(DNI) incur errors of the order of 5e40% depending on location and
time granularity [4,5].

Several studies assess the representativeness of measuring
points by comparing solar observations measured from both sat-
ellites and ground sites [6,7,8]. In related studies, ground-based
stations are members of existing sensor networks and they are
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used to define the groundetruth. Zagouras et al. [9,10,11] were the
first to use cluster analysis of features extracted from satellite-
derived solar data to determine the appropriate number of
coherent clusters within different domains of interest. The results
of these studies were based on criteria related to the convergence of
the clustering methods to cluster partitions, validated with clus-
tering validity metrics. An appropriate number of clusters is
determined by assessing the clustering quality among a variety of
clustering solutions.

In addition to clustering, geostatistics is also used in network
design studies. For example, in the presence of sparse measure-
ments [12], show how geostatistical predictive techniques in
conjunction with simulation iterations can assist in determining
optimized locations. More commonly, though, geostatistics is uti-
lized to model an attribute in space and/or time from a set of
measured values. Specifically, in solar literature solar irradiance is
oftenmodeled by using parametric models, e.g. [13], autoregressive
techniques for solar irradiance time series, e.g. [14], and geo-
statistics. Geostatistics has the benefit of considering solar irradi-
ance as a stochastic random field [15], thus providing insight about
the solar irradiance field structure, homogeneities/stationarity and
internal characteristics. In this process, geostatistics enables inte-
gration of relevant information about the solar irradiance field, and
utterly enables prediction on the basis of spatial and/or temporal
correlation.

Most often, methodologies used for geostatistical prediction are
linear model-based techniques such as the kriging family of pre-
dictors. Kriging techniques have been previously used to predict
solar irradiance at unsampled locations, both within purely spatial
and spatiotemporal contexts (e.g., [16,17,18]). More recently [19],
exhibited a more in-depth kriging example in the joint spatio-
temporal continuum, and indicated the importance of spatiotem-
poral prediction for solar irradiance forecasting. Despite their
mainstream character, these geostatistical techniques are built on
restrictive assumptions and known limitations. For example, linear
models are used to describe phenomena that are inherently
nonlinear, and Gaussian assumptions are required for the data
distributions by the linear interpolators. An additional major
weakness of mainstream techniques is the inability to account
rigorously for nontrivial uncertainty in the data set. Thus, in the
presence of uncertain measurements such as probabilistic distri-
butions or interval data, measurements are either skipped or being
used by reducing their informational content to single values.

We propose the Bayesian maximum entropy (BME) method as
an advanced alternative to the mainstream geostatistical method-
ologies. Being free of limitations and weaknesses like the above,
BME additionally features very attractive characteristics for solar
irradiance studies, such as the ability to rigorously incorporate
uncertain data. This methodology has been applied previously
broadly and successfully in fields such as environmental sciences,
atmospheric monitoring, and environmental health risk and
assessment; see, e.g., [20,21,22,23]. BME as a valuable alternative
for solar irradiance prediction was first introduced by Kolovos in
Ref. [24] in a limited study across the USA. An extensive application
of BME in accurately predicting subhourly solar photovoltaic output
over state-size areas was presented more recently by Lee et al. in
Ref. [25]. On the side of teaming with cluster analysis in the pro-
posed framework, our study extends the previous geostatistical
solar literature by applying BME prediction for solar irradiance on a
spatially large scale in the state-wide domain of California, and a
temporally systematic scale at subhourly 30-minute intervals over
a period of days across a calendar year. Moreover, to the best of our
knowledge it is the first time geostatistics is implemented as an
effective tool in a cross-disciplinary solar irradiance analysis in a
double role; that is, both for energy resources assessment at this

detailed space-time level, and as a critical component for planning
and decision-making in the deployment of state-wide solar
projects.

In the following, we begin with a descriptive overview of our
proposed framework in Section 2, alongside with information
about our case study in the state of California. Then, Section 3
provides a closer view to the collaborating methodologies in our
framework prior to stepping through our analysis in detail. In
Section 4 we discuss the results of this work, followed by our
conclusions.

2. A comprehensive outlook

We approach the topic of selecting the number and installation
locations for an MS network by introducing a 2-segment analysis
framework. Our proposed framework is the composition of two
complementary segments that combine cluster analysis schemes
and geostatistics. The first segment is comprised by Optimal Cluster
Selection (OCS), which is a clustering process and validation
methodology to select an optimal number of clusters (NC) from an
initial given set of GHI measurements. NC is the number of MS to be
installed, by assigning a MS to each cluster area. Therefore, select-
ing the NC depends, for example, on the available resources to be
invested for the creation of a MS network. Given the level of re-
sources, a client can specify a feasible numeric window of MS. In
response, OCS provides the analysis to determine an optimal NC,
where optimality is deemed in terms of clustering validity assess-
ment by adhering to statistical coherence features. In all, the OCS
analysis improves MS placement by determining a structured sta-
tion network scheme on the basis of (i) cluster analysis, and (ii)
internal coherence criteria rooted in the cluster geometry.

OCS begins by performing cluster analysis of GHI temporal
vectors that represent the solar irradiance temporal activity over
the nodes of a gridded domain. The clustering algorithm employed
in this study is the Adaptive Affinity Propagation (adAP), and yields
a potential range of NC controlled by the algorithm's convergence
criteria. From this range of NCwe determine the optimal NC using a
knee point detection scheme [26] on scientific criteria that pertain
to cluster validity assessment [27,28]. Namely, in the following we
estimate the change of gradient (knee-point) of an evaluation graph
of clustering quality metrics calculated through the measures of
compactness and separation among the derived clusters.

Using the above scientific criteria, OCS produces possible MS
configurations on the basis of the derived spatial segmentation into
the optimal NC. For illustration, our work examines 3 such different
location configurations; (A) the exact cluster centers as the ob-
tained from the clustering process, (B) the clusters centers indi-
cated by the median vector among each cluster's vector set, and (C)
a random selection of location within the region of each cluster.
Clearly, the concept of determining the alternative cluster locations
in B and C is limited by the fixed area of a cluster, as well as the
position of the exact center. We investigate additional character-
istics of these configurations A, B, and C in the analysis Section 4.
OCS makes configuration recommendations by examining the
coherence of a cluster in terms of its intra-variance. In that sense,
good quality clustering is expected to produce highly coherent
cluster regions with low variance among the data members within
a cluster. Consequently, we aim to explore the extent to which the
derived clustering is able to capture clusters with low intra-
variance and, thus, how representative the main cluster center is
when compared to other candidate locations within the cluster.

After an optimal NC is determined and candidate MS configu-
rations are suggested, the OCSmethodology results arewired to the
second analysis segment of our framework. The second segment
uses geostatistical spatiotemporal analysis to sift through candidate
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