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a b s t r a c t

Based on power law (PL), a novel method is proposed to extrapolate surface wind speed to the wind
turbine (WT) hub height, via assessment of wind shear coefficient (WSC), by only using surface turbu-
lence intensity, a parameter actually regarded as a merely critical one in wind energy studies. A 2-year
(2012e2013) dataset from the meteorological mast of Cabauw (Netherlands) was used, including 10-min
records collected at 10, 20, 40, and 80 m. WT hub heights of 40 and 80 m have been targeted for the
extrapolation, being accomplished based on turbulence intensity observations at 10 and 20 m. Trained
over the year 2012, the method was validated over the year 2013.

Good scores were returned both in wind speed and power density extrapolations, with biases within 7
and 8%, respectively. Wind speed extrapolation was better predicted 10e40 m (NRMSE ¼ 0.16, r ¼ 0.95)
than 10e80 and 20e80 m (NRMSE ¼ 0.20e0.24, r ¼ 0.86e0.91), while for power density even finer
scores than wind speed were achieved (r ¼ 0.98 at 40 m, and r ¼ 0.96 at 80 m). Method's skills were also
assessed in predicting wind energy yield. Application over sites with different terrain features and
stability conditions is expected to provide further insight into its application field.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing challenge in wind energy technology is leading to
develop WT models as power rated as 6e8 MW, with hub heights
regularly above 100 m [1]. In such a rapidly growing scenario,
chasing the wind at steadily increasing WT hub heights by using
the classical meteorological masts appears as a more and more
expensive solution. The use of wind profilers such as LIDAR or
SODAR is certainly more appropriate [2], yet largely increasing the
costs of the wind power project, often making it economically not
viable. In any case, during the earlier feasibility study, when to plan
on-site wind measurement campaigns, the knowledge in advance
with fair confidence of a site wind energy potential is crucial to
cope with upper observations unavailability. In the past decades,
various mathematical and modelling approaches have been
implemented to estimate WT hub height wind resource at such
feasibility stage. These include, e.g. reanalysis data downscaling
numerical models [3], CFD models [2,4], and statistical techniques
such machine learning [5] or artificial neural networks [6]. Aside

from requiring a huge amount of input data, main drawbacks of
these methods are that they might be computationally expensive,
not sufficiently spaceeresolved, ore converselye too siteespecific.
On the other hand, to increase the knowledge on wind speed
extrapolation models appears preferable as allowing a wider
application spectrum to predict wind resource at different WT hub
heights. Among others, the use of this approach offers the advan-
tage of merely using wind measurements routinely collected at
surface heights (10 or 20 m AGL).

PL and LogL are the main laws achieving wind speed extrapo-
lation [7e9], the former being the most widely used [10]. In wind
energy studies, PL-based wind speed extrapolation, via assessment
ofWSC, is performed bymeans of two approaches: (i) extrapolation
of wind speed time series (based on models, e.g. by SH [11] or PD
[12]); (ii) extrapolation of wind speed Weibull distribution (ac-
cording to the JM model [13]). The strict relationship among these
two approaches has been earlier [14] and recently [15] investigated,
and their mutual advantages and limitations compared.

In the current work, based on PL, a novel method is proposed
to predict WSC, and thus extrapolate surface wind speed, by only
using surface turbulence intensity. The latter is commonly regar-
ded as a critical parameter in wind energy studies owing to
various aspects, as it increases: (i) the load levels onto WTs, thus* Tel.: þ39 55 3033743; fax: þ39 55 308910.
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reducing WTs operational life [4,16]; (ii) the energy yield uncer-
tainty, mostly as a result of WT power curve uncertainty [5,17,18];
(iii) energy losses, thus reducing the WT power output [16,18,19].
Conversely, turbulence intensity has been treated as a “positive”
factor here by investigating the existence of a reasonable rela-
tionship with WSC in order to be used as a predictor of the latter.
Observations from the 213 m tall meteorological mast of Cabauw
(Netherlands) were used, including 10 min records collected at
heights of 10, 20, 40, and 80 m AGL. A 2-year dataset (01/01/
2012e31/12/2013) was processed. Turbulence intensity observa-
tions collected at two surface levels, 10 and 20 m, were used. Two
WT hub heights, 40 and 80 m, have been targeted, since obser-
vations to test the model were available at those heights. A linear
regression analysis by stability conditions was performed to train
the model (2012), which was later validated over an independent
1-year period (2013) and its accuracy assessed in extrapolating
annual mean wind speed, power density, Weibull distribution, and
wind energy yield.

2. Background

2.1. Wind speed logarithmic law and power law

According to the LogLL, the v vertical profile can be calculated as
[20]:

vðzÞ ¼ ½u*ðzÞ=k�$½lnðz=z0Þ � jmðz=LÞ� (1)

The LogLL is a physical model incorporating the phenomenon of
atmospheric stability and is valid over large ranges of altitude. For
stability-dependent Jm function, typical approximations are sug-
gested (e.g. [21]). From v1 measurements, v2 can be estimated by
transforming Eq. (1):

v2 ¼ v1
lnðz2=z0Þ �Jmðz2=LÞ
lnðz1=z0Þ �Jmðz1=LÞ

(2)

In the case of neutral stability (Jm ¼ 0), the LogLL reduces to the
widely used LogL, which only depends on z0 and is valid near the
ground over relatively flat terrain [21]:

v2 ¼ v1
lnðz2=z0Þ
lnðz1=z0Þ

(3)

Since the LogLL proved to be difficult to be used for general
engineering studies, the far simpler PL equation is generally used
for estimating v vertical profile at WT hub height:

v2 ¼ v1

�
z2
z1

�a

(4)

The exponent a, also known as WSC, depends on v, z0, atmo-
spheric stability and the height interval [7,8,21]. Actually, Eq. (4) is
an engineering, empirical formula, essentially amalgamating the
stability correction and z0 features into one single factor (i.e. a)
[8,9], but has no physical basis. Its validity is generally limited to the
lower atmosphere, upto 150e200 m [8].

From Eq. (4), a can be measured once records of v1 and v2 are
available:

a ¼ lnðv2=v1Þ
lnðz2=z1Þ

(5)

2.2. Turbulence intensity

Wind turbulence is a critical parameter as dictating the opera-
tional life of WTs. It mainly generates from two causes, often

Nomenclature

Abbreviations
WT wind turbine
AGL above ground level
PL power law
LogL logarithmic law
LogLL log-linear law
WSC wind shear coefficient
SH Smedman-H€ogstr€om and H€ogstr€om
PD Panofsky and Dutton
JM Justus and Mikhail

Variables
a wind shear exponent [e]
z height AGL [m]
v wind speed [m/s]
z0 surface roughness length [m]
k von Karman's constant [e], typically set to 0.4
L MonineObukhov length [m]
u* friction velocity [m/s]
Jm MonineObukhov stability function [e]
I turbulence intensity [%]
su standard deviation of longitudinal v fluctuation [m/s]
sq standard deviation of wind direction [deg]
T temperature [�C]
Pa pressure [mbar]

r air density [kg/m3]
P wind power density [W/m2]
c Weibull scale factor [m/s]
k Weibull shape factor [e]
AF availability factor [%]
CF capacity factor [%]
FLH full-load hours [h/y]
AEY annual energy yield [MWh/y]

Statistical skill scores
N number of observations
Oi observations
Pi predictions
mO ¼ Oi mean observations
sO standard deviation of observations
mP ¼ Pi mean predictions
sP standard deviation of predictions

NB normalised bias ¼ 1
N
PN

i¼1ðOi � PiÞ=
ffiffiffiffiffiffiffiffiffiffiffi
Oi$Pi

q

RMSE root mean square error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
PN

i¼1ðOi � PiÞ2
q

NRMSE normalised root mean square error ¼ RMSE=
ffiffiffiffiffiffiffiffiffiffiffi
Oi$Pi

q
IA index of agreement

¼ 1� ½N$RMSE2=
PN

i¼1ð
���Pi � Oi

���þ ���Oi � Oi

���Þ2�
r correlation coefficient

¼ 1
N
PN

i¼1ðOi � OiÞ$ðPi � PiÞ=sO$sP
NE normalised error ¼ (Oi � Pi)/Oi
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