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a b s t r a c t

Temporal solar variability significantly affects the integration of solar power systems into the grid. It is
thus essential to predict temporal solar variability, particularly given the increasing popularity of solar
power generation globally. In this paper, the daily variability of solar irradiance at four sites across
Australia is quantified using observed time series of global horizontal irradiance for 2003e2012. It is
shown that the daily variability strongly depends on sky clearness with generally low values under a
clear or overcast condition and high values under an intermittent cloudiness condition. Various statistical
techniques are adopted to model the daily variability using meteorological variables selected from the
ERA-Interim reanalysis as predictors. The nonlinear regression technique (i.e. random forest) is
demonstrated to perform the best while the performance of the simple analog method is only slightly
worse. Among the four sites, Alice Springs has the lowest daily variability index on average and Rock-
hampton has the highest daily variability index on average. The modelling results of the four sites
produced by random forest have a correlation coefficient of above 0.7 and a median relative error around
40%. While the approach of statistical downscaling from a large spatial domain has been applied for other
problems, it is shown in this study that it generally suffices to use only the predictors at a single near
point for the problem of solar variability. The relative importance of the involved meteorological vari-
ables and the effects of clearness on the modelling of the daily variability are also explored.

Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The installed capacity of solar photovoltaic (PV) electricity has
increased from about 100 gigawatts (GW) in 2012 to over 138 GW in
2013 worldwide [13]. In Germany, solar PV penetration (the ratio of
the electricity generated by solar PV to the total electricity con-
sumption) is about 5.7 percent in 2013 and can be much higher in a
short time period [18]. However, solar irradiance received at or near
ground is highly variable in nature, which in turn leads to the
variability of the power produced by PV panels. Given the trend of
the increasing grid penetration of solar power, this has significant
impacts on the operation of power systems across a range of time
scales. In principle, the earlier and the more accurately system
operators and planners know the extent of variability of power
production, the more options they will have to accommodate it,
and consequently the cheaper it will be to manage the system [14].
While day ahead forecasts for weather information is normally
provided by numerical weather prediction (NWP) tools, empirical

models are needed to link weather information and the extent of
solar variability.

The most common parameter of solar irradiance recorded in
local meteorological stations is the global horizontal irradiance
(GHI), which is defined as the total (direct plus diffused) solar
irradiance projected on a horizontal surface. Using GHI time series,
Stein et al. [17] proposed a simple and robust metric (the daily
variability index, or DVI) to quantify the mean daily variability of
solar irradiance. They also showed that DVI correlates strongly with
the ramp rate of GHI, which is essentially important in managing
the integration of solar power systems into the grid (see e.g. Refs.
[11,14]). In this paper, the 1-min GHI time series measured by the
Bureau of Meteorology at four sites across Australia are used and
the corresponding DVI series are calculated. Then, statistical
models are built to link DVI to atmospheric variables in the ERA-
Interim reanalysis so as to understand what the main drivers for
DVI are.

Statistical downscaling methods are often used for simulating or
predicting local weather conditions from coarse-resolution and
large-scale atmospheric model output (see e.g. Refs. [8,9]). The
target of these methods is to build an empirical model which links
the large-scale atmospheric fields (i.e. predictors) with the local-
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scale quantities of interest (i.e. predictands). In our case, we
compare two approaches whereby the predictors are chosen from a
single point in the local area in the first instance and from a large
spatial domain in the second. In the first case, the statistical model
relates a set of predictors and the targeted predictand at the same
location. As such, the term “statistical downscaling” is used in a
general sense. The methodology has been recently adopted for the
problem of wind variability [5,7]. Davy et al. [5] have successfully
downscaled reanalysis fields from the US National Centers for
Environmental Prediction tomodel wind variability atWaratah Bay,
Victoria, Australia after dimension reduction using empirical
orthogonal function (EOF) techniques. The resulting model of wind
variability is found to outperform a simple regression method
against wind speed as well as models using multiple linear
regression (MLR). Following [5], Ellis et al. [7] extended the use of
statistical downscaling techniques to the problem of the variability
of wind power generation. In the present study, four techniques
have been used to build empirical models between DVI and
meteorological records: the analog method (see e.g. Ref. [19], the
MLR method, a nonlinear regression method called random forest
(RF) and persistence, which is used as our benchmark.

In Section 2, the GHI measurement at four sites and the ERA-
Interim reanalysis are introduced. Also, the background of the
downscaling techniques is given and the metrics of performance
evaluation used in this paper are defined. In Section 3, the DVI and
daily clearness index (DCI) of solar irradiance are defined and their
statistical properties are discussed. The meteorological fields from
the ERA-Interim reanalysis are selected and used as predictors to
construct downscaling models using four downscaling techniques
in Section 4. Concluding remarks are given in Section 5.

2. Data and methodology

2.1. Data preparation

The Bureau of Meteorology (BOM) has been undertaking high
frequency observations of various solar parameters across
Australia. The observation data is freely available through its
website (http://reg.bom.gov.au/climate/reg/oneminsolar/index.
shtml). This study uses the GHI 1-min time series from 2003 to
2012 at four observation sites in Australia, which are Alice Springs,
Darwin, Rockhampton and Wagga Wagga, respectively. The GHI is
measured at 1 Hz using CM-11 pyranometers manufactured by
Kipp and Zonen, and then is averaged over the preceding 1 min to
produce the 1-min time series. The locations, elevations and the
rates of missing data of the four observation sites are given in
Table 1. The four sites are selected to represent a desert climate
(Alice Springs), a tropical climate (Darwin), a humid subtropical
climate (Rockhampton) and a temperate climate (Wagga Wagga),
respectively.

The ERA-Interim reanalysis is a global atmospheric reanalysis
product of the European Centre for Medium-Range Weather Fore-
casts (ECMWF) covering the period from 1979 to near present. Its
resolution is 6-hourly in time, viz. 4AM, 10AM, 4PM and 10PM in
Australian Eastern Standard Time (AEST) and 0:75

� � 0:75
�
in space.

Although the ERA-Interim reanalysis is one of the best reanalysis

products available in the world, it should be realised that it is not
completely equivalent to observation whereby errors may arise
from the process of data assimilation or running numerical models
when global observations are unavailable for some variables.

2.2. Statistical models

Random forest (RF) is a nonlinear ensemble learning method
recently developed by Refs. [2,3], which constructs multiple-
predictor models. RF can be used for both regression and classifi-
cation problems. For regression its algorithm contains three major
steps as follows [12]. First, n bootstrap samples are drawnwith each
sample including approximately 64% of the original training data.
Then, an unpruned regression tree is grown for each of the boot-
strap samples. However, rather than using the best split among all p
predictors, only m of the p predictors are randomly sampled and
the best split is chosen from among these m variables. Finally, the
prediction is formed by averaging the output of the n trees. In the
present study, the default values of n ¼ 500 and m ¼ p/3 are used
while a change ofm and nwithin a reasonable range does not affect
the resulting performance of RF significantly in this study. In
addition to constructing multiple-predictor models, RF also pro-
duces scores measuring the relative importance of each predictor
on the predictand. This score is estimated by calculating the mean
decrease in accuracy due to permuting the associated predictor
while leaving the others unchanged [12].

RF has been used to study complex problems where nonline-
arity often plays an important role (e.g. Refs. [1,5]). One prominent
feature of random forest is its robustness against overfitting [2,16].
Eccel et al. [6] downscaled the output of two NWP models to pre-
dict the minimum spring temperature in an alpine region using RF
and artificial neural networks (ANN), and found that RF performs
similarly as ANN, if not superior. The random Forest library [12] in
the statistical software R [15] is used to perform the RF analysis in
this study.

In addition to RF, three other techniques are also used including
MLR, persistence (i.e. use the DVI of yesterday to predict the DVI of
today) and the analog method. As its name suggests, the analog
method identifies similar patterns of the predictors at large scale in
their historical records, and then the simultaneous local predictand
is associated with the large scale pattern. In practice, the similarity
is normally quantified by the Euclidean distance in the multi-
dimensional hyperspace of the predictors and the prediction is
calculated as the mean of the predictand in the analogs identified
[9]. Zorita and Storch [19] used the analog method as a statistical
downscaling technique and compared it with other more compli-
cated methods, such as canonical correlation analysis and neural
networks and found that the analog method performs in general as
well as the more complicated methods.

2.3. Metrics of performance evaluation

Three metrics are used in the following results to quantitatively
evaluate the performance of a model: Pearson's correlation coeffi-
cient r, the mean absolute error (MAE) and the median relative
error (MeRE). While one metric may not be able to evaluate and
compare the performance of multiple models accurately, it is ex-
pected that the models can be evaluated comprehensively by
studying the three metrics together. Assuming the observation
values are xi and the corresponding modelled values are yi, the
three metrics are defined as follows:

r ¼
Pn

i¼1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyi � yÞ2

q ; (1)

Table 1
Detailed information about the four observation sites used in the paper. RMD stands
for the rate of missing data.

Location Latitude Longitude Elevation [m] RMD [%]

Alice Springs �23.7951 133.8890 546 1.7
Darwin �12.4239 130.8925 30.4 4.8
Rockhampton �23.3753 150.4775 10.4 2.9
Wagga Wagga �35.1583 147.4573 212 0.76
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