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This paper proposes a data driven model-based condition monitoring scheme that is applied to wind
turbines. The scheme is based upon a non-linear data-based modelling approach in which the model
parameters vary as functions of the system variables. The model structure and parameters are identified
directly from the input and output data of the process. The proposed method is demonstrated with data
obtained from a simulation of a grid-connected wind turbine where it is used to detect grid and power
electronic faults. The method is evaluated further with SCADA data obtained from an operational wind
farm where it is employed to identify gearbox and generator faults. In contrast to artificial intelligence
methods, such as artificial neural network-based models, the method employed in this paper provides a
parametrically efficient representation of non-linear processes. Consequently, it is relatively straight-
forward to implement the proposed model-based method on-line using a field-programmable gate array.

© 2014 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Recently, there has been increasing interest in the distributed
generation (DG) of electricity due to the deregulation of utilities,
environmental constraints, and concerns regarding climate change
[1]. In the context of this paper, DG refers to electric power gen-
eration sources connected directly to the distribution network
allowing for the integration of renewable energy resources, such as
solar, CHP (Combined Heat and Power), and wind [2], with capac-
ities ranging from less than 1 kW to over 100 MW.

The potential benefits of using DG include a more reliable
electrical power supply and power loss reduction over transmission
lines by generating electricity closer to the end user. Indeed, DG can
provide power with little reliance on the grid. However, DG systems
present several problems. Conventionally, voltage and reactive
power control is based upon on the assumption that power flows
from a generator to a substation, and subsequently to the feeders.
The introduction of DG systems alters this power flow, causing
problems with voltage regulation, equipment ratings to be excee-
ded, and protection schemes to be misdirected [3]. Consequently, it
is vital for DG systems to operate reliably, and health condition
monitoring and diagnostics schemes are essential.
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Wind turbines represent a major form of distributed generation.
It is common for wind turbines to be installed in remote locations
on land or offshore, leading to difficulties in routine inspection and
maintenance. In addition, wind turbines in these locations are often
subject to harsh operating conditions. Over an operating life of 20
years, the maintenance costs for an offshore wind farm are esti-
mated to be up to 30% of the total income [4]. Therefore, condition
monitoring (CM) systems play an important role in the reliable
operation of wind farms, providing information about the past and
current condition of wind turbines and enabling optimal sched-
uling of maintenance activities, while minimising the risk of un-
expected failure.

Given known input signals of a process, the corresponding
output signals can be predicted using models obtained from the
data generated by a monitoring system, such as SCADA (Supervi-
sory Control and Data Acquisition) [5], and a CM scheme can be
implemented by comparing actual output data with that predicted
by the model. Any differences between the measurement and
prediction signals could be caused by changes in the process,
possibly due to the occurrence of faults [6]. The model-based
method is illustrated in Fig. 1, in which the residual signal can
reveal potential component failures. Clearly, an accurate model is
essential for such a scheme, and previous research has employed a
range of modelling techniques.

Mechanistic modelling techniques, for example using software
such as Simulink [7], require a thorough understanding of the
process, and may result in a complex or over-parameterised model
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Fig. 1. Schematic diagram of the model-based condition monitoring system.

not suitable for on-line implementation as a CM system. Data-
based models [8] do not require knowledge of the process or spe-
cific parameters, they are obtained directly from measured input
and output signals collected either during planned experiments or
by monitoring the process during normal operation. When imple-
menting a CM scheme on-line using data-based models, it is
essential to identify a low-order model. Higher-order models
require increasingly more values of the past input and output sig-
nals to calculate the predicted output, resulting in an increased
response time.

Many processes associated with wind turbines are non-linear.
Artificial intelligence (Al) techniques are utilised by many re-
searchers for model-based CM schemes, for example artificial
neural networks (ANNs) [9] and fuzzy logic [10]. Al techniques are
particularly suitable for this application being robust to noisy,
incomplete and uncertain data. It should be noted that care needs
to be taken to avoid ‘over-fitting’ of an ANN to the training data,
which can lead to a poor performance when implemented on-line.

This paper proposes a non-linear data-based modelling
approach to condition monitoring in which the model parameters
vary as functions of the system variables, or ‘state variables’ [11].
The model structure and the model parameters are identified
directly from the input and output data of the process. Although
these state dependent parameter models cannot represent every
type of non-linear behaviour, they are applicable to a wide range of
processes, including those that behave chaotically. In contrast to
ANNSs, the data-based models employed in this paper are a para-
metrically efficient representation of non-linear processes, and are
particularly suitable for forecasting [12], and providing the basis for
automatic controller design [13]. However, the research described
here represents the first occasion for which this type of model has
been employed for a CM system.

The remainder of this paper is organised as follows. Section 2
describes the system identification methodology used in the
research. A computer simulation of a grid-connected wind turbine
is described in Section 3. Grid and power electronics faults are
included in the simulation, and the non-linear model-based CM
method is demonstrated by identifying these faults. In Section 4,
non-linear models of an operational turbine are obtained using
fault-free SCADA data, which are used to identify gearbox and
generator faults in turbines on the same farm. Adaptive thresholds
are derived from the model predictions, which in turn form the
basis of an early warning system. A hardware implementation of
the proposed approach, using an FPGA (field-programmable gate
array), is presented in Section 5. Finally, conclusions to the research
and future work are discussed in Section 6.

2. Model identification

A linear system can be represented by an auto-regressive with
exogenous variables (ARX) model or auto-regressive moving
average with exogenous variables (ARMAX) model. These model
structures are usually represented by a discrete-time transfer

function model, describing the relationship between the input and
output signals as a ratio of polynomials. However, many processes
associated with wind turbines are non-linear, and, although linear
models can predict the output of many non-linear processes over a
small operating range, this may be inadequate for model-based CM
systems. In this regard, non-linear ARX models based upon ANNs
have been utilised for wind turbine fault detection [9].

In this paper, non-linear processes are modelled using the
following dynamic auto-regressive exogenous (DARX) model, in
which the identified non-linearity is characterised by the time
varying model parameters,
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where yi and uy are the kth sampled output and input variables
respectively; ey is white noise with zero mean and variance ¢2 that
accounts for any random component of the observed data; A(zLk)
and B(z k) are appropriately defined polynomials in the backward
shift operator, z~,
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in which the model parameters, aj...an, bg...b;,, are non-linear
functions of the vectors xqx = [x11 -.- x1n) and x2k = [X21 --- X2m]
defined in terms of the system variables, or ‘state variables’, upon
which the parameters are dependent. A time delay of 6 samples is
incorporated into the model by setting the leading ¢ coefficients of
the B(z~ k) polynomial to zero.

The method of model identification employed in this paper
comprises three stages [14]. In the first stage, the model structure
and possible state dependent variables are identified by estimating
a discrete-time linear transfer function model using any suitable
method. The coefficient of determination [15] is employed here to
determine the most appropriate model structure, and is defined,

RR=1-2 3)

where ¢ is the sample variance of the model residuals, that is, the
difference between the model output and the actual output; and 032,
is the variance of the actual output. If the variance of the model
residuals is low compared with the variance of the actual output, R%
tends to unity, indicating the model gives a good explanation of the
actual output data. If the variances are similar in magnitude, R?
tends to zero, indicating a poor fit.

During the second stage of model identification, stochastic time-
varying parameter models are estimated using recursive Kalman
filtering [16] and fixed-interval smoothing [17] algorithms. Since
the variations in the parameters are functions of the state variables,
the process can display severe non-linear or chaotic behaviour.
Subsequently, these standard recursive estimation algorithms will
not work satisfactorily. However, by sorting the data in a non-
temporal order, for example, in ascending order so that the varia-
tions in the model parameters are slower and smoother, the stan-
dard identification methods can be used.

Equation (1) can be rewritten in the following vector-matrix
form,
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