
Technical note

Vortical structures in the wake of the savonius wind turbine by the
discrete vortex method

David Afungchui a,*, Badreddinne Kamoun b, Ali Helali c

aUniversity of Bamenda, Faculty of Sciences, Department of Physics, P.O. Box 39, Bambili, Cameroon
b Sfax Faculty of Sciences, Department of Physics, Laboratory of Applied Physics (L.P.A), Sfax, Tunisia
cResearch Unit of Mechanics and Energetic (URME), National Engineering School of Tunis, 1002 Tunis, Tunisia

a r t i c l e i n f o

Article history:
Received 24 October 2013
Accepted 19 March 2014
Available online

Keywords:
Savonius
Wind turbine
Numerical modelling
Vortex shedding
Discrete vortex method

a b s t r a c t

This paper treats the vortex shedding phenomenon of a savonius wind turbine, whose knowledge is
primordial in correctly calculating the airloads on the blades. The specific aim being to numerically
predict the disposition and geometry of the vortical structures in the wake of the savonius rotor whose
existence has been visualised by a number of experimentalists. In the numerical approach, the blade is
represented by discrete bound vortices while the wake is generated in a time stepping calculation as an
emission of free vortices. The calculations are enhanced by the Newmann boundary condition coupled to
the KuttaeJoukowsky condition and the Kelvin’s theorem for the conservation of circulation. The con-
vection of the vortices in the wake is accomplished through a predictor corrector integration scheme. A
code has been developed which predicts the wake structure to be in good agreement with the experi-
mental visualizations: For low tip speed ratios, the wake consists of a series of three discrete vortical
structures while at higher tip speed ratios, the characteristic structure is the presences of a central vortex.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The savonius rotor is a vertical axis wind turbine built up of two
half cylinders displaced along their common diameter. It is very
robust, simple to construct and is characterised by a high starting
torque. Fig. 1a and b, respectively, shows a perspective view and a
view in the median plane of a savonius rotor.

Past visualisation studies conducted on the savonius rotor lead
to two main conclusions concerning the vortical structures in its
wake. In the first case, the wake consists of the formation of three
distinct vortical structures for each complete turn of the rotor
(Benghrib et al. [2], Botrini et al. [3]). In the second case the wake is
characterised by the presence of a central vortex located at the
centre of the rotor (Modi et al. [14]). These two scenarios will be
investigated numerically in the present paper.

The flow field around the savonius rotor is unsteady and non-
linear owing to the interaction of the air with the rotating rotor.
The unsteady inviscid potential theory will be applied in the
modelling. The calculations will be carried out on a 2D cut of the

rotor in the median plane (Fig. 1b). The rotor is represented in the
median plane by two half circles displaced along their common
diameter by a small distance denoted by e. Each half circle is then
treated as a lifting airfoil in interaction with the other (Fig. 2).

The modelling is carried out using the discrete vortex method
whereby the contour of the two half circles is represented by a
distribution of bound vortices. The unknown intensities of these
vortices are obtained by applying the Neumann boundary condi-
tion together with the KuttaeJoukowsky condition. The Kelvin
theorem assures the conservation of the circulation in the flow
field.

The unsteady motion of an inviscid fluid about an airfoil is al-
ways accompanied by the shedding of the boundary layer, which
extends in to the fluid from the separation point in the form of a
thin sheet. As the separated boundary layer moves along, it is
deformed in such a way that vortices are generated along it. These
vortices gradually diffuse and disperse into the flow field. This
phenomenon is actually observed in the case of small viscosity
(high Reynolds number). It is possible to obtain a reasonable close
mathematical description for the study of an ideal fluid motion by
using the potential theory Afungchui et al. [1], Kamoun et al. [10],
Leishman [11].

A theoretical study has earlier been carried out on the savonius
rotor by Ogawa [15], but this work was rather general and special
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emphasis was not laid on the vortex formation as predicted by
experimental visualizations. This paper will treat in detail this
aspect of the flow over the rotor. It is well known from numerical
simulations that two-dimensional dynamics of flow over bodies are
distinguished by the presence of long-lived organized coherent
shears and vortices which are characterized by high energy and
vorticity concentrations. The contribution on the dynamics of
coherent structures, including their time-evolution and in-
teractions, plays an important role to the understanding of the
spatial flows structure. Coherent vortices develop basic in-
homogeneities and nonlocal dynamical properties which, in gen-
eral, cannot be considered in phenomenological analyses or within
the framework of statistical approaches. Consequently, the Objec-
tive of this paper is to numerically predict the geometry of the
vortical structures in the wake of the savonius rotor which has a
direct effect on its aerodynamic performance. The formulation of
the problem is based on the discrete vortex method as outlined in
what follows.

2. Methods

The contour of each half circle is divided into a certain number
of segments. Discrete vortices are distributed at the middle of the
segments while the control points are located at the extremities of
the segments.

The leading edge (LE) and the trailing edge (TE) of each half
circle are the points of the emission of the free vortices. The vortex
intensities on the half circles are continuously changing in time and
are determined by applying the flow tangency condition; Euvrand
[5], Giesing [7,8], together with the KuttaeJoukowsky (KJ) condi-
tion; Afungchui et al. [1], Euvrand [5], Herman [9], Maskell [12],
Poling et al. [16]. The points where the vortices are emitted are
fixed in advance at some little distances from the extremities of the
half circles. All these aspects are represented in Fig. 2. The free
vortex intensities emitted at each time instant from the four ex-
tremities of the half circles, at the nascent points, are obtained by
applying the circulation conservation theorem of Kelvin Max [13],
Poling and Telionis [16], Sipcic and Morino [17], Suciu and Morino

[18]. This condition provides a means for the shedding of the free
vortices into the wake.

If each half circle is divided into N line segments, then there will
be (2N þ 4) equations to solve at each time step in order to
determine the (2N þ 4) unknowns. These unknowns are the in-
tensities of the N bound vortices on each of the two half circles and
the four free vortices emitted at the nascent points.

The action of an up coming wind with a velocity U
!

0, brings
about the rotation of the rotor about its centre with an angular
velocity u!. The absolute velocity is irrotational and can be derived
from a potential function F. The complex potential f(z) of the flow
field, at a point z on one of the half circles, at any time instant is
given by Ref. [1]:
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where z¼(x þ Iy) is the coordinate of a point in the complex plane,
I ¼

ffiffiffiffiffiffiffi
�1

p
, the summation index (k), represents the two extremities

of a semicircle, n is the number of time steps since the beginning of
motion, N is the number of segments of each semicircle and U0 is
the upstream velocity considered to be a complex quantity. The
potential of the flow is simply deduced as being the real part of f(z).

The main boundary condition is the flow tangency condition
which enforces the semicircle to agree with one of the relative
streamlines. This condition is implemented by annulling the

Nomenclature

� vector product
U0
�!

upcoming wind velocity
S incepted surface of the rotor
l length of a segment of the baseline profile
r! position vector of a point on the profile
R rotor diameter
n! normal unit vector
s! tangential unit vector
t time instant
Dt time increment
rc vortex core radius
z coordinates of a point in the complex plane
f complex potential
d diameter of the semicircle
D diameter of the savonius rotor
e displaced distance of two half circles
H height of rotor

Greek symbols
g bound vortex intensity
q angular position

h parameter which can take A or B
G free vortex intensity
l0 tip speed ratio (l0¼uD/(2U0))
u! ¼ _a

!
angular velocity

J stream function
F potential function

Subscript
A semicircle A
B semicircle B
LE leading edge
TE trailing edge
ALE leading edge of A
ATE trailing edge of A
BLE leading edge of B
BTE trailing edge of B
AE one of the extremities of A
BE one of the extremities of B
WAE wake point emitted from one of the extremities of A
WBE wake point emitted from one of the extremities of B
i receptor point
j inductor point
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