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a b s t r a c t

Oceanic tides have the potential to yield a vast amount of renewable energy. Tidal stream generators are
one of the key technologies for extracting and harnessing this potential. In order to extract an
economically useful amount of power, hundreds of tidal turbines must typically be deployed in an array.
This naturally leads to the question of how these turbines should be configured to extract the maximum
possible power: the positioning and the individual tuning of the turbines could significantly influence
the extracted power, and hence is of major economic interest. However, manual optimisation is difficult
due to legal site constraints, nonlinear interactions of the turbine wakes, and the cubic dependence of the
power on the flow speed. The novel contribution of this paper is the formulation of this problem as an
optimisation problem constrained by a physical model, which is then solved using an efficient gradient-
based optimisation algorithm. In each optimisation iteration, a two-dimensional finite element shallow
water model predicts the flow and the performance of the current array configuration. The gradient of
the power extracted with respect to the turbine positions and their tuning parameters is then computed
in a fraction of the time taken for a flow solution by solving the associated adjoint equations. These
equations propagate causality backwards through the computation, from the power extracted back to the
turbine positions and the tuning parameters. This yields the gradient at a cost almost independent of the
number of turbines, which is crucial for any practical application. The utility of the approach is
demonstrated by optimising turbine arrays in four idealised scenarios and a more realistic case with up
to 256 turbines in the Inner Sound of the Pentland Firth, Scotland.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing cost of energy, tidal turbines are becoming a
competitive and promising option for renewable electricity gener-
ation. A key advantage of tidal energy is that the power extracted is
predictable in advance, which is highly attractive for grid manage-
ment. In order to amortise the fixed costs of installation and grid
connection, arrays consisting of hundreds of tidal turbines must
typically be deployed at a particular site. This raises the question of
where to place the turbines within the site and how to tune them
individually in order to maximise the power output; finding the
optimal configuration is of huge importance as it could substantially

change the energy captured and possibly determine whether the
project is economically viable. However, the determination of the
optimal configuration is difficult because of the complex flow in-
teractions between turbines and the fact that the power output
depends sensitively on the flow velocity at the turbine positions.

This problem has heretofore been addressed in two different
ways. One approach is to simplify the tidal flowmodel such that the
solutions are either available as explicit analytical expressions, or
are extremely fast to compute. This means that the optimum can be
analytically derived, or that the whole parameter space of possible
configurations can be rapidly explored. For example, Bryden and
Couch [5] and Garrett and Cummins [15] optimised simplified
models to derive an estimate for the maximum energy that can be
extracted from a tidal basin. Vennell [39,40] used simple one-
dimensional models to demonstrate the importance of tuning
each turbine individually to account for the channel geometry,
turbine positions, and the tidal forcing. Thus, optimisation of farms
is a crucial step needed to achieve their full potential. However,
Vennell [42] observes that this optimisation requires many
model runs (if performed naively), thus making it computationally
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infeasible to use expensive, physically-accurate flowmodels for this
task. While this approach can provide a coarse estimate for the
power potential of a site, these simplified models cannot accurately
capture the complex nonlinear flow interactions between turbines.

The second approach is to use more complex flow models to
accurately predict the tidal flow, the turbinewakes, and the resulting
power output. These models are usually formulated as numerical
solutions to partial differential equations (PDEs). The computational
expense of these models prohibits the exploration of the whole
parameter space [38]. Consequently, typically only a handful of
manually identified turbine configurations are investigated in a given
scenario [1]. Divett et al. [8] compared the power output of four
different layouts in a rectangular channel by solving the two-
dimensional nonlinear shallow water equations and was able to
improve the power outcome by over 50% compared to a regular
layout. Lee et al. [28] used a three-dimensional model to investigate
how the distance between adjacent rows in a regular array layout
impacts the turbine efficiency and showed an efficiency decay for
distances of less than three times the turbine diameter. While these
studies showthepotentialof improvingtheperformancebychanging
the turbine positions, such manual optimisation guided by intuition
and experience becomes difficult in a realistic domainwith complex
bottom bathymetry, flow dynamics and hundreds of turbines.

In this paper, we present a novel technique for maximising the
power extraction of array configurations that combines the physical
fidelity of PDE-based flow models with advanced automated opti-
misation techniques. This approach allows the identification of
optimal solutions in a computationally feasible numberof iterations,
circumventing the computational limitations noted in Ref. [42]. The
turbine configuration problem is formulated as a PDE-constrained
optimisation problem, which is a major topic of research in
appliedmathematics [20,21]. The resultingmaximisationproblem is
solved using a gradient-based optimisation algorithm that takes
orders of magnitude fewer iterations than genetic algorithms or
simulated annealing approaches (see e.g. Ref. [3]). In this paper, the
power extracted by an array configuration is predicted using a two-
dimensional nonlinear shallow water model, which captures the
interactions between the geometry, the turbines, and the flow. The
gradient of the power is efficiently computed using the adjoint
technique of variational calculus, which solves an auxiliary system
that propagates causality backwards through the physical system.
This yields the gradient at a cost almost independent of the number
of turbines to be optimised, which is crucial for the method to be
applied to large arrays. This gradient is used by the optimisation
algorithm to automatically reposition the turbines and to adjust
their tuning parameters. The flow solution is re-evaluated, and the
algorithm iterated until an optimum is found.

This approach has several key advantages. Firstly, it closes the
optimisation loop, by accounting for the effects of the turbines on
the flow field itself. This is necessary to find the actual optimum of
the nonlinear optimisation problem. Secondly, unlike gradient-free
methods, the approach requires a relatively small number of model
evaluations and scales to large numbers of turbines, which is
necessary for the optimisation of industrial arrays. For example, in
Section 6, an array of 256 turbines is optimised in a realistic domain
at an approximate cost of 200 flow solutions. Thirdly, the optimi-
sation algorithm can incorporate complex constraints such as
minimum separation distances, bathymetry gradient constraints,
and legal site restrictions. Finally, the same mathematical frame-
work extends naturally to more realistic flow models such as the
Reynolds-averaged NaviereStokes equations, and to other func-
tionals such as profit or environmental impact.

The approach is implemented in an open-source software
framework called OpenTidalFarm; all code and examples from this
paper are available at http://opentidalfarm.org.

1.1. Optimisation algorithms

Optimisation algorithms can be divided into two categories:
gradient-free and gradient-based algorithms. Gradient-free opti-
misation algorithms use the functional of interest (in this case,
power extracted by the array) as a black box. They proceed by
evaluating the functional at many points in parameter space and
use these values to decide which areas merit further exploration.
While these methods tend to be robust and can, under certain
smoothness conditions, provably find globally optimal solutions
[33], they typically require a very large number of functional
evaluations that scales linearly or superlinearly with the number of
parameters to be optimised. For example, Bilbao and Alba [3] used a
genetic algorithm that mimics the process of natural evolution to
optimise the location of 8 wind turbines. The algorithmwas able to
improve the power output by about 70% compared to the initial
layout after 17,300 functional evaluations. This large number of
evaluations clearly introduces a practical upper limit for the num-
ber of turbines that can be optimised. This difficulty is compounded
if a more realistic (and hence more expensive) model is used.

By contrast, gradient-based optimisation algorithms use addi-
tional information to update the position in parameter space at
each iteration: the first or higher derivatives of the functional of
interest with respect to the parameters. Depending on the problem,
this can lead to a significant reduction in the number of iterations
required compared to gradient-free algorithms, making these the
only feasible choice for large scale optimisation problems [20]. One
caveat of applying gradient-based optimisation algorithms is that
they find only local optima. This issue can be circumvented by using
hybrid approaches [22]. The main difficulty of applying gradient-
based methods is that the implementation of the gradient
computation can be difficult for complex models, as it involves
differentiating through the solution of a partial differential
equation.

One way to obtain the derivative information is to approximate
the gradient using finite differences. However, a major disadvan-
tage of this approach is that a single gradient evaluation requires a
large number of functional evaluations that scales linearly with the
number of optimisation parameters. This sets a practical upper
bound on the number of turbines to be optimised, and discards the
main advantage of gradient-based optimisation algorithms. Alter-
natively, the tangent linearisation of themodel (i.e. the derivative of
the model evaluated at a particular solution) can efficiently
compute the derivative of all outputs with respect to a single input,
while the adjoint linearisation can efficiently compute the deriva-
tive of a single output with respect to all inputs [19]. For the turbine
optimisation problem, we wish to maximise a single output (the
power extracted) with respect to many input parameters (the po-
sitions and tuning parameters of the turbines); this means that the
adjoint approach is the natural choice, as the required gradient
information can be computed in a number of equation solves that is
independent of the number of turbines.

The development of adjoint models is generally considered as
very complicated [17,30]. However, this problem has been solved in
recent work for the case where the forward model is discretised
using finite elements, in the high-level FEniCS framework [11]. This
allows for the extremely rapid development of optimally efficient
adjoint models, which significantly reduces the development effort
required to implement gradient-based optimisation algorithms for
PDE-constrained optimisation problems [13].

To the best of our knowledge, this paper presents the first
application of the adjoint method to the optimisation of turbine
arrays. While the examples are shown in the marine context, it is
expected that the presented techniques can also be applied to the
optimisation of wind farms. As the wind turbine layout problem is
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