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a b s t r a c t

The implementation of a hydrogen transport economy based on renewable energy sources is seen by
many as the ultimate sustainable transport solution. However, dimensioning of hydrogen production
systems is complex: renewable energy sources are stochastic in nature, requiring the collection of
empirical datasets relating to weather patterns on a daily, seasonal and annual basis; and hydrogen
production is characterised by sensitivity to operating conditions and diversity in the performance of the
component parts.

A probabilistic model is developed for dimensioning of hydrogen production systems that removes the
reliance on the collection of empirical datasets and the requirement for detailed performance charac-
terisation of component parts. The model utilises well known correlations and distribution modelling
techniques to predict energy output from either a photovoltaic array or wind turbine and hence the
number of fuel cell electric vehicles (FCEVs) that could be supported on an annual basis.

The model was implemented in MatLab and simulation results were compared with existing empirical
based studies. Through simulation, limitations of the model were investigated and discussed. It was
shown that the model was able to predict the number of FCEVs supported to within 10% (solar pathway)
and 22% (wind pathway) for those studies investigated. These results are in alignment with the intention
of the model as a first stage tool for the dimensioning of renewable hydrogen energy transport micro-
economies.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The replacement of hydrocarbon fuels with hydrogen is seen by
many as the ultimate transport solution [1]. Hydrogen can be oxi-
dised in an electrochemical reaction within a fuel cell to produce
electricity to drive an electric motor. The only emission produced
from this reaction is water. Therefore fuel cells electric vehicles
(FCEVs) offer emission free propulsion. In addition, the use of fuel
cells in electric vehicles offers significantly higher efficiencies than
conventional gasoline/diesel systems [2].

Hydrogen molecules (H2), do not exist naturally, but rather are
present as a component of larger molecules, the vast majority of
which is water. Hydrogen is an energy carrier (like electricity)
rather than a primary fuel source, as there needs to be energy input
for it to be produced. There are over 90 identifiable different

methods to produce hydrogen over the range of chemical, elec-
trochemical, biological and thermal routes [3]. To ensure a secure,
sustainable and environmentally benign transport solution,
hydrogen must be produced from renewable energy sources.
Technologically and commercially, the most mature of the path-
ways to renewable hydrogen production is electrolysis using elec-
tricity generated from photovoltaic (PV) arrays or wind turbines
(WT). However, the production of hydrogen from PV and WT is
highly resource dependent and production is likely to be small scale
and distributed. Due to the expense of transporting hydrogen,
demand will need to be located close to the supply. This will lead to
the creation of transport micro-economies [4].

Dimensioning of hydrogen production systems is complex.
Renewable energy sources are stochastic in nature, requiring the
collection of empirical datasets relating to weather patterns on a
daily, seasonal and annual basis, whilst hydrogen production is
characterised by operating conditions and a diversity in the per-
formance of the component parts. This study develops a probabi-
listic model for the purposes of dimensioning hydrogen production
systems for hydrogen transport micro-economies. The model looks
to remove the reliance on the collection of empirical datasets and
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the requirement for detailed performance characteristics of the
component parts. The model was implemented in MatLab and
simulation results were compared with existing studies to establish
the validity of the model in predicting system size. A parametric
study was then undertaken to evaluate the sensitivity of the model
results to key input parameters. The model is intended a 1st step
assessment tool for developing hydrogen transport micro-
economies.

2. Hydrogen system description

2.1. Photovoltaic arrays

A PV cell is a device that converts the energy of sunlight directly
into electricity by the photovoltaic effect. In terms of the energy
output, the performance of a PV module is tested under standard
rated conditions (SRC) of 1000W/m2, 25 �C and an air mass (AM) of
1.5 to determine the rated power. Commercial PV cells are available
as monocrystalline, polycrystalline and amorphous (thin film) sil-
icon. Due to the structural differences in the silicon between each
type of PV cell, each type of construction has different electrical
properties resulting in a range of efficiencies. Monocrystalline PV
has the highest commercially available conversion efficiency at
w17%, polycrystalline w12% and amorphous w8% [5].

The in-service power output from a PV array (PV modules wired
together electrically) can be calculated simply from the efficiency
and size of the array, and the solar radiation such that:

P ¼ hcAGt (1)

where: P is the power output (W); hc is the efficiency of the array
(between 0 and 1); A is the area of the array (m2); and Gt is the
irradiance (W/m2).

The efficiency hc of the PV array is strongly influenced by the
operating temperature [6]. Increasing cell temperature reduces the
cell voltage as the thermally excited electrons increasingly influ-
ence the electrical properties of the cell; hence reducing the power
output.

PV efficiency modelling has focused on developing relationships
for the calculation of operating temperature based on the module
type, irradiance and external conditions. A recent review by Skolapi
et al. [7] listed 35 separate expressions for operating temperature
calculation. These expressions are further subdivided into implicit
and explicit expressions. Examples include del Cueto [8] who
provides an expression requiring conductive and convective heat
transfer coefficients, module emissivity and reflectivity; and Mattei
et al. [9] who require a combined front and back heat transfer co-
efficient as a function of wind speed. These examples highlight the
requirement of empirically derived data for many calculations of
operating temperature.

For this study a simplified correlation model developed by
Skoplaki et al. [10] is used. The derivation of this model is outlined
below.

The traditional expression for array efficiency taking into ac-
count operating temperature is given as:

hc ¼ href

h
1� bref

�
Tc � Tref

�i
(2)

where: sref is the efficiency at SRC; bref is the efficiency correction
coefficient for temperature (�C�1); Tc is the operating temperature
(�C); and Tref is the temperature at SRC (�C).

The value for bref is dependent on the PV cell material. For poly-
crystalline silicon cells the value for bref is taken as 0.0048 �C�1 [11].
The value for Tc is largely insensitive to ambient air temperature

conditions but highly sensitive to wind speed [12] with convection
losses3e4 timesgreater thanradiation losses [10]. Therefore ignoring
radiation and free convection losses from the PV array a simplified
relationship can be derived for operating temperature. Substituting
typical manufacturer’s data for a polycrystalline cell this becomes:
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"
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where: Ta is the ambient temperature (�C); and Vf is the free wind
speed (m/s).

The error associated with the above simplification was calcu-
lated by Skoplaki to be less than 2 �C.

Equation (3) assumes that the PV array is free standing, there-
fore the mounting coefficient, u, is added. This has been developed
from an empirically derived parameter known as the Ross coeffi-
cient whichmodifies the rate of temperature rise above ambient for
increasing solar radiation. The Ross coefficient has been calculated
for different mounting types and u is the ratio between them.
Values of u are: free standing u ¼ 1; flat roof u ¼ 1.2; sloped roof
u ¼ 1.8; and façade integrated u ¼ 2.4. Therefore the equation for
operating temperature becomes:

Tc ¼ Ta þ u

"
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Combining equations (1), (2) and (4) with Tref¼ 25 �C (operating
temperature at SRC), href ¼ 0.12 (typical efficiency for a poly-
crystalline cell at SRC) and Ta ¼ 15.5 �C (for the UK and taken from
Perry and Hollis [13]) gives the simple correlation for PV array
power output based on polycrystalline silicon cells as presented in
Skoplaki et al. [10].

P ¼ 0:12AGt
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Though several simplifications have been made in the deriva-
tion of the above equation, testing against empirical calculations
showed that the average error was 6.5% [10]. It has been shown to
be comparable in predicting operating temperature as a function of
irradiance to more detailed models. A further advantage of this
relationship is that whilst equation (5) commits the user to
modelling a polycrystalline silicon cell, it can be easily adapted to
other PV technologies by using readily available data.

Solar radiation models have ranged from simple to complex nu-
merical models and have employed a variety of different parameters
such as sunshine duration, air temperature, cloudiness, relative hu-
midity, precipitation and atmospheric particle characteristics as in-
puts. Examples are: Bristow et al. [14] developed a simple
mathematical relationship which related the daily total solar radia-
tion to the daily range of air temperature. This model further relied
on three empirically derived coefficients which in turn were calcu-
lated from measured solar radiation data for the given site. Muneer
et al. [15] present a method to calculate direct and diffuse radiation
on an hourly basis based on the hourly dry and wet bulb tempera-
tures, atmospheric pressure and sunshine duration. This method
proved to be highly accurate for data averaged over a daily or
monthly basis with calculated results within 3% of empirically
recorded data. Hansen [16] developed a model of daily irradiance
calculated from the daily rainfall occurrence and temperature range.

The above methods have primarily been used to complete
partial meteorological datasets and hence data such as air
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